• Log in with Facebook Log in with Twitter Log In with Google      Sign In    
  • Create Account
  LongeCity
              Advocacy & Research for Unlimited Lifespans

Photo
- - - - -

Autism, mTOR and Rapamycin

autism mtor rapamycin aspergers autophagy synaptic pruning

  • Please log in to reply
4 replies to this topic

#1 PWAIN

  • Guest
  • 1,288 posts
  • 241
  • Location:Melbourne

Posted 22 August 2014 - 01:58 AM


Found this article very interesting:

 

http://newsroom.cumc...synapses-brain/

 

So it seems that Autism is the result of excessive synapses and the way to fix this is to decrease mTOR. Luckily, this is exactly what Rapamycin does. Unfortunately Rapamycin is rather nasty stuff. Hopefully we can develop something else that reduces mTOR and 'cure' autism and extend life at the same time. I wonder if we could create some kind of monoclonal antibody to do this?

 

Here is a copy of the article...

 

Children and adolescents with autism have a surplus of synapses in the brain, and this excess is due to a slowdown in a normal brain “pruning” process during development, according to a study by neuroscientists at Columbia University Medical Center (CUMC). Because synapses are the points where neurons connect and communicate with each other, the excessive synapses may have profound effects on how the brain functions. The study was published in the August 21 online issue of the journal Neuron.

 

A drug that restores normal synaptic pruning can improve autistic-like behaviors in mice, the researchers found, even when the drug is given after the behaviors have appeared.

 

“This is an important finding that could lead to a novel and much-needed therapeutic strategy for autism,” said Jeffrey Lieberman, MD, Lawrence C. Kolb Professor and Chair of Psychiatry at CUMC and director of New York State Psychiatric Institute, who was not involved in the study.

 

Although the drug, rapamycin, has side effects that may preclude its use in people with autism, “the fact that we can see changes in behavior suggests that autism may still be treatable after a child is diagnosed, if we can find a better drug,” said the study’s senior investigator, David Sulzer, PhD, professor of neurobiology in the Departments of Psychiatry, Neurology, and Pharmacology at CUMC.

 

During normal brain development, a burst of synapse formation occurs in infancy, particularly in the cortex, a region involved in autistic behaviors; pruning eliminates about half of these cortical synapses by late adolescence. Synapses are known to be affected by many genes linked to autism, and some researchers have hypothesized that people with autism may have more synapses.

 

To test this hypothesis, co-author Guomei Tang, PhD, assistant professor of neurology at CUMC, examined brains from children with autism who had died from other causes. Thirteen brains came from children ages two to 9, and thirteen brains came from children ages 13 to 20. Twenty-two brains from children without autism were also examined for comparison.

 

Dr. Tang measured synapse density in a small section of tissue in each brain by counting the number of tiny spines that branch from these cortical neurons; each spine connects with another neuron via a synapse.

By late childhood, she found, spine density had dropped by about half in the control brains, but by only 16 percent in the brains from autism patients.

 

“It’s the first time that anyone has looked for, and seen, a lack of pruning during development of children with autism,” Dr. Sulzer said, “although lower numbers of synapses in some brain areas have been detected in brains from older patients and in mice with autistic-like behaviors.”

 

Clues to what caused the pruning defect were also found in the patients’ brains; the autistic children’s brain cells were filled with old and damaged parts and were very deficient in a degradation pathway known as “autophagy.” Cells use autophagy (a term from the Greek for self-eating) to degrade their own components.

 

Using mouse models of autism, the researchers traced the pruning defect to a protein called mTOR. When mTOR is overactive, they found, brain cells lose much of their “self-eating” ability. And without this ability, the brains of the mice were pruned poorly and contained excess synapses. “While people usually think of learning as requiring formation of new synapses, “Dr. Sulzer says, “the removal of inappropriate synapses may be just as important.”

 

The researchers could restore normal autophagy and synaptic pruning—and reverse autistic-like behaviors in the mice—by administering rapamycin, a drug that inhibits mTOR. The drug was effective even when administered to the mice after they developed the behaviors, suggesting that such an approach may be used to treat patients even after the disorder has been diagnosed.

 

Because large amounts of overactive mTOR were also found in almost all of the brains of the autism patients, the same processes may occur in children with autism.

 

“What’s remarkable about the findings,” said Dr. Sulzer, “is that hundreds of genes have been linked to autism, but almost all of our human subjects had overactive mTOR and decreased autophagy, and all appear to have a lack of normal synaptic pruning. This says that many, perhaps the majority, of genes may converge onto this mTOR/autophagy pathway, the same way that many tributaries all lead into the Mississippi River. Overactive mTOR and reduced autophagy, by blocking normal synaptic pruning that may underlie learning appropriate behavior, may be a unifying feature of autism.”

 

Alan Packer, PhD, senior scientist at the Simons Foundation, which funded the research, said the study is an important step forward in understanding what’s happening in the brains of people with autism.

 

“The current view is that autism is heterogeneous, with potentially hundreds of genes that can contribute. That’s a very wide spectrum, so the goal now is to understand how those hundreds of genes cluster together into a smaller number of pathways; that will give us better clues to potential treatments,” he said.

 

“The mTOR pathway certainly looks like one of these pathways. It is possible that screening for mTOR and autophagic activity will provide a means to diagnose some features of autism, and normalizing these pathways might help to treat synaptic dysfunction and treat the disease.”

 

The authors declare no competing financial interest



The paper is titled, “Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits.” Other authors are: Kathryn Gudsnuk, Sheng-Han Kuo, Marisa L. Cotrina, Gorazd Rosoklija, AlexanderSosunov, Mark S. Sonders, Ellen Kanter, Candace Castagna, Ai Yamamoto, OttavioArancio, Bradley S. Peterson, Frances Champagne, Andrew J. Dwork, and James Goldman from CUMC; and Zhenyu Yue (Icahn School of Medicine at Mount Sinai). Marisa Cotrina is now at the University of Rochester.


  • Ill informed x 1
  • dislike x 1
  • like x 1

#2 Flex

  • Guest
  • 1,629 posts
  • 149
  • Location:EU

Posted 22 August 2014 - 06:59 PM

Afaik the Bodybuilding-scene has talked about mTor inhibitors in the past Years.

Maybe there is allready something.

 

The only thing what pops in my mind for now, is Ecdysterone.

But there is only evidence for pruning in Insects. IIRC the effects on mammalians are not researched

and there is a chance that this couldnt work for mammalians.

 

Btw, Cannabis does decrease the pruning via mTor activation and some side effects are caused by this.

Dissociation of the pharmacological effects of THC by mTOR blockade.

http://www.ncbi.nlm....pubmed/23358238

 

Edit:

Ah, here is something for now. But I dont know anything about the bioavilability, BBB penetration and/or affinity for some of them:

http://www.ncbi.nlm....pubmed/20812900

Updates of mTOR inhibitors.

...Besides, some natural products, such as epigallocatechin gallate (EGCG), caffeine, curcumin and resveratrol, have been found to inhibit mTOR as well. Here, we summarize the current findings regarding mTOR signaling pathway and review the updated data about mTOR inhibitors as anticancer agents.....

 


Edited by Flex, 22 August 2014 - 07:06 PM.


sponsored ad

  • Advert
Click HERE to rent this advertising spot for BRAIN HEALTH to support LongeCity (this will replace the google ad above).

#3 Bateau

  • Guest
  • 165 posts
  • 67
  • Location:Newport City
  • NO

Posted 23 August 2014 - 05:50 PM

Any AMPK activator will reduce mTOR, Berberine being the most potent supplemental AMPK activator.



#4 blood

  • Guest
  • 926 posts
  • 254
  • Location:...

Posted 24 August 2014 - 06:35 AM

Any AMPK activator will reduce mTOR, Berberine being the most potent supplemental AMPK activator.

 

How does metformin compare to berberine wrt AMPK activation in people?



sponsored ad

  • Advert
Click HERE to rent this advertising spot for BRAIN HEALTH to support LongeCity (this will replace the google ad above).

#5 Bateau

  • Guest
  • 165 posts
  • 67
  • Location:Newport City
  • NO

Posted 24 August 2014 - 03:41 PM

This is a bold statement, but I believe berberine to be the superior AMPK activator:

 

That's mainly because in women with PCOS, berberine has superior improvements on waist-to-hip ratio, total cholesterol, triglycerides,  LDL cholesterol, HDL cholesterol, and SHBG resulting in more live births and less side effects compared to metformin. Similarly in diabetics berberine has a more profound effect on lipid profiles while having equipotent effects on fasting blood sugar and HbA1c compared to metformin.

 

http://www.ncbi.nlm....les/PMC2410097/

http://www.ncbi.nlm....pubmed/22019891

http://www.ncbi.nlm....pubmed/23869585

 

 

All these are effects that could be tied back to the AMPK activation, but berberine's inhibitory effects on PTP1B or DPP-4 might be why it has superior effects to metformin. There's more trials that confirm this, I just didn't waste my time tracking them all down.

 

(side-note: berberine is also the best DPP-4 inhibitor I'm aware of since most DPP-4 inhibitors would allow oncogenesis to manifest easier while berberine is a potent anti-cancer agent)

 

Basically berberine is the shit, squared.


Edited by Bateau, 24 August 2014 - 04:05 PM.






Also tagged with one or more of these keywords: autism, mtor, rapamycin, aspergers, autophagy, synaptic pruning

0 user(s) are reading this topic

0 members, 0 guests, 0 anonymous users