• Log in with Facebook Log in with Twitter Log In with Google      Sign In    
  • Create Account
  LongeCity
              Advocacy & Research for Unlimited Lifespans

Photo
- - - - -

Rapamycin studies

rapamycin

  • Please log in to reply
No replies to this topic

#1 Razor444

  • Guest
  • 240 posts
  • 65
  • Location:-

Posted 25 March 2015 - 10:35 PM


I'm going to endeavour to keep track of new rapamycin studies in this thread.

 

Prevention of carcinogen and inflammation-induced dermal cancer by oral rapamycin includes reducing genetic damage.

 

 

Cancer prevention is a cost-effective alternative to treatment. In mice, the mechanistic target of rapamycin (mTOR) inhibitor rapamycin prevents distinct spontaneous, non-inflammatory cancers, making it a candidate broad-spectrum cancer prevention agent. We now show that oral microencapsulated rapamycin (eRapa) prevents skin cancer in dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) carcinogen-induced, inflammation-driven carcinogenesis. eRapa given before DMBA/TPA exposure significantly increased tumor latency, reduced papilloma prevalence and numbers, and completely inhibited malignant degeneration into squamous cell carcinoma. Rapamycin is primarily an mTORC1-specific inhibitor, but eRapa did not reduce mTORC1 signaling in skin or papillomas, and did not reduce important pro-inflammatory factors in this model, including p-Stat3, IL-17A, IL-23, IL-12, IL-1β, IL-6, or TNF-α. In support of lack of mTORC1 inhibition, eRapa did not reduce numbers or proliferation of CD45-CD34+CD49fmid skin cancer initiating stem cells in vivo and marginally reduced epidermal hyperplasia. Interestingly, eRapa reduced DMBA/TPA-induced skin DNA damage and the hras codon 61 mutation that specifically drives carcinogenesis in this model, suggesting reduction of DNA damage as a cancer prevention mechanism. In support, cancer prevention and DNA damage reduction effects were lost when eRapa was given after DMBA-induced DNA damage in vivo. eRapa afforded picomolar concentrations of rapamycin in skin of DMBA/TPA-exposed mice, concentrations that also reduced DMBA-induced DNA damage in mouse and human fibroblasts in vitro. Thus, we have identified DNA damage reduction as a novel mechanism by which rapamycin can prevent cancer, which could lay the foundation for its use as a cancer prevention agent in selected human populations.

 

Subacute calorie restriction and rapamycin discordantly alter mouse liver proteome homeostasis and reverse aging effects

 

 

 

Calorie restriction (CR) and rapamycin (RP) extend lifespan and improve health across model organisms. Both treatments inhibit mammalian target of rapamycin (mTOR) signaling, a conserved longevity pathway and a key regulator of protein homeostasis, yet their effects on proteome homeostasis are relatively unknown. To comprehensively study the effects of aging, CR, and RP on protein homeostasis, we performed the first simultaneous measurement of mRNA translation, protein turnover, and abundance in livers of young (3 month) and old (25 month) mice subjected to 10-week RP or 40% CR. Protein abundance and turnover were measured in vivo using 2H3–leucine heavy isotope labeling followed by LC-MS/MS, and translation was assessed by polysome profiling. We observed 35–60% increased protein half-lives after CR and 15% increased half-lives after RP compared to age-matched controls. Surprisingly, the effects of RP and CR on protein turnover and abundance differed greatly between canonical pathways, with opposite effects in mitochondrial (mt) dysfunction and eIF2 signaling pathways. CR most closely recapitulated the young phenotype in the top pathways. Polysome profiles indicated that CR reduced polysome loading while RP increased polysome loading in young and old mice, suggesting distinct mechanisms of reduced protein synthesis. CR and RP both attenuated protein oxidative damage. Our findings collectively suggest that CR and RP extend lifespan in part through the reduction of protein synthetic burden and damage and a concomitant increase in protein quality. However, these results challenge the notion that RP is a faithful CR mimetic and highlight mechanistic differences between the two interventions.

 

 







Also tagged with one or more of these keywords: rapamycin

1 user(s) are reading this topic

0 members, 1 guests, 0 anonymous users