• Log in with Facebook Log in with Twitter Log In with Google      Sign In    
  • Create Account
  LongeCity
              Advocacy & Research for Unlimited Lifespans

Photo

NAD Precursor NMN Improves DNA Repair in Mice


  • Please log in to reply
1 reply to this topic

#1 reason

  • Guardian Reason
  • 1,101 posts
  • 250
  • Location:US

Posted 24 March 2017 - 12:58 PM


Sirtuin research, much hyped and in the end producing nothing other than more knowledge of metabolism, has somewhat transitioned into a focus on nicotinamide adenine dinucleotide (NAD) these days. NAD is central in cellular energy production and mitochondrial activity, and appears involved in many of the same processes that sirtuins influence. It is still the case that compelling demonstrations of slowed aging or enhanced longevity in laboratory animals have yet to emerge from this line of research, such as via the use of the NAD precursor nicotinamide mononucleotide (NMN) as a dietary supplement. The research is academically interesting, as here where it is shown to affect DNA repair mechanisms, but from a practical point of view for the treatment of aging this still appears to be another marginal approach, lacking the ability to produce reliable and significant effects on aging and longevity.

DNA repair is essential for cell vitality, cell survival and cancer prevention, yet cells' ability to patch up damaged DNA declines with age for reasons not fully understood. New findings offer an insight into how and why the body's ability to fix DNA dwindles over time and point to a previously unknown role for the signaling molecule NAD as a key regulator of protein-to-protein interactions in DNA repair. If affirmed in further animal studies and in humans, the findings can help pave the way to therapies that prevent DNA damage associated with aging and with cancer treatments that involve radiation exposure and some types of chemotherapy, which along with killing tumors can cause considerable DNA damage in healthy cells. Human trials with NMN are expected to begin within six months, the researchers said.

The investigators started by looking at a cast of proteins and molecules suspected to play a part in the cellular aging process. Some of them were well-known characters, others more enigmatic figures. The researchers already knew that NAD, which declines steadily with age, boosts the activity of the SIRT1 protein, which delays aging and extends life in yeast, flies and mice. Both SIRT1 and PARP1, a protein known to control DNA repair, consume NAD in their work. Another protein DBC1, one of the most abundant proteins in humans and found across life forms from bacteria to plants and animals, was a far murkier presence. Because DBC1 was previously shown to inhibit vitality-boosting SIRT1, the researchers suspected DBC1 may also somehow interact with PARP1, given the similar roles PARP1 and SIRT1 play.

To get a better sense of the chemical relationship among the three proteins, the scientists measured the molecular markers of protein-to-protein interaction inside human kidney cells. DBC1 and PARP1 bound powerfully to each other. However, when NAD levels increased, that bond was disrupted. The more NAD present inside cells, the fewer molecular bonds PARP1 and DBC1 could form. When researchers inhibited NAD, the number of PARP1-DBC1 bonds went up. In other words, when NAD is plentiful, it prevents DBC1 from binding to PARP1 and meddling with its ability to mend damaged DNA. What this suggests is that as NAD declines with age, fewer and fewer NAD molecules are around to stop the harmful interaction between DBC1 and PARP1. The result: DNA breaks go unrepaired and, as these breaks accumulate over time, precipitate cell damage, cell mutations, cell death and loss of organ function.

Next, to understand how exactly NAD prevents DBC1 from binding to PARP1, the team homed in on a region of DBC1 known as a Nudix homology domain (NHD), a pocket-like structure found in some 80,000 proteins across life forms and species whose function has eluded scientists. The team's experiments showed that NHD is an NAD binding site and that in DBC1, NAD blocks this specific region to prevent DBC1 from locking in with PARP1 and interfering with DNA repair. To determine how the proteins interacted beyond the lab dish and in living organisms, the researchers treated young and old mice with the NAD precursor NMN, which makes up half of an NAD molecule. NAD is too large to cross the cell membrane, but NMN can easily slip across it. Once inside the cell, NMN binds to another NMN molecule to form NAD. As expected, old mice had lower levels of NAD in their livers, lower levels of PARP1 and a greater number of PARP1 with DBC1 stuck to their backs.

However, after receiving NMN with their drinking water for a week, old mice showed marked differences both in NAD levels and PARP1 activity. NAD levels in the livers of old mice shot up to levels similar to those seen in younger mice. The cells of mice treated with NMN also showed increased PARP1 activity and fewer PARP1 and DBC1 molecules binding together. The animals also showed a decline in molecular markers that signal DNA damage. In a final step, scientists exposed mice to DNA-damaging radiation. Cells of animals pre-treated with NMN showed lower levels of DNA damage. Such mice also didn't exhibit the typical radiation-induced aberrations in blood counts, such as altered white cell counts and changes in lymphocyte and hemoglobin levels. The protective effect was seen even in mice treated with NMN after radiation exposure.

Link: http://www.newswise....-cellular-aging


View the full article at FightAging

#2 bkaz

  • Guest
  • 85 posts
  • 4

Posted 24 March 2017 - 01:22 PM

Double post :) : http://www.longecity...al-in-6-months/



Click HERE to rent this BIOSCIENCE adspot to support LongeCity (this will replace the google ad above).



0 user(s) are reading this topic

0 members, 0 guests, 0 anonymous users