• Log in with Facebook Log in with Twitter Log In with Google      Sign In    
  • Create Account
  LongeCity
              Advocacy & Research for Unlimited Lifespans

Photo

Activating Hair Follicle Stem Cells to Enhance Hair Growth


  • Please log in to reply
1 reply to this topic

#1 reason

  • Guardian Reason
  • 1,101 posts
  • 248
  • Location:US

Posted 16 August 2017 - 11:08 AM


This work, I think, is not significant for the hair growth, but for the fact that the researchers involved have found a simple way to enhance the activity of a stem cell population. It suggests that the research community might expect to find analogous (but probably quite different) simple ways to selectively achieve the same outcome in other stem cell populations that support other tissue types. Losing hair is somewhere in the vicinity of inconvenient and annoying. There are any number of other tissues in which the age-related decline of stem cell activity is ultimately fatal, and those seem to me to be the more important challenges to focus upon.

Hair follicle stem cells are long-lived cells in the hair follicle; they are present in the skin and produce hair throughout a person's lifetime. They are quiescent, meaning they are normally inactive, but they quickly activate during a new hair cycle, which is when new hair growth occurs. The quiescence of hair follicle stem cells is regulated by many factors. In certain cases they fail to activate, which is what causes hair loss.

Researchers found that hair follicle stem cell metabolism is different from other cells of the skin. Cellular metabolism involves the breakdown of the nutrients needed for cells to divide, make energy and respond to their environment. The process of metabolism uses enzymes that alter these nutrients to produce metabolites. As hair follicle stem cells consume the nutrient glucose - a form of sugar - from the bloodstream, they process the glucose to eventually produce a metabolite called pyruvate. The cells then can either send pyruvate to their mitochondria - the part of the cell that creates energy - or can convert pyruvate into another metabolite called lactate. "Our observations about hair follicle stem cell metabolism prompted us to examine whether genetically diminishing the entry of pyruvate into the mitochondria would force hair follicle stem cells to make more lactate, and if that would activate the cells and grow hair more quickly."

The research team first blocked the production of lactate genetically in mice and showed that this prevented hair follicle stem cell activation. Conversely, they increased lactate production genetically in the mice and this accelerated hair follicle stem cell activation, increasing the hair cycle. "Before this, no one knew that increasing or decreasing the lactate would have an effect on hair follicle stem cells. Once we saw how altering lactate production in the mice influenced hair growth, it led us to look for potential drugs that could be applied to the skin and have the same effect."

The team identified two drugs that, when applied to the skin of mice, influenced hair follicle stem cells in distinct ways to promote lactate production. The first drug, called RCGD423, activates a cellular signaling pathway called JAK-Stat, which transmits information from outside the cell to the nucleus of the cell. The research showed that JAK-Stat activation leads to the increased production of lactate and this in turn drives hair follicle stem cell activation and quicker hair growth. The other drug, called UK5099, blocks pyruvate from entering the mitochondria, which forces the production of lactate in the hair follicle stem cells and accelerates hair growth in mice.

Link: https://stemcell.ucl...-make-hair-grow


View the full article at FightAging

#2 zorba990

  • Guest
  • 1,601 posts
  • 315

Posted 17 August 2017 - 02:04 AM

Does lactic acid work topically? It's pretty cheap

https://specialingre...gredients.co.uk


Or What if you just added more pyruvate?



Topically it's a cataract preventative
https://www.ncbi.nlm...pubmed/21887096
"Prevention of cataract in diabetic mice by topical pyruvate.
Hegde K1, Kovtun S, Varma S.
Author information
Abstract
BACKGROUND:
It has been previously reported that oral administration of sodium pyruvate inhibits oxidative stress and cataract formation in diabetic animals. With a view to exploring the clinical usefulness of these findings, this study examined its preventive effect when administered topically as an eye drop.
METHODS:
Diabetes was induced by intraperitoneal injections of streptozotocin. At the onset of diabetes, an eye drop preparation containing 2.5% sodium pyruvate was administered six times a day at 90-minute intervals. Treatment was continued for 6 weeks. Cataract formation was monitored ophthalmoscopically after mydriasis with 1% tropicamide eye drops. Subsequently, the treated and untreated diabetic animals and the age-matched normal controls were euthanized, their eyes enucleated, and the lenses isolated for biochemical assessment of protein glycation and glutathione levels.
RESULTS:
Treatment with pyruvate eye drops was found to be significantly effective in inhibiting protein glycation. Glutathione levels were also better maintained. In addition, ophthalmoscopic examination revealed that the incidence of cataract in the pyruvate-treated group was only 12% as compared with the untreated diabetics in whom the incidence was 73%. Cataracts at this stage were largely equatorial.
CONCLUSION:
The results demonstrate that topical application of pyruvate can potentially be useful in attenuating or preventing cataract formation induced by diabetes and other conditions of oxidative stress."

Click HERE to rent this BIOSCIENCE adspot to support LongeCity (this will replace the google ad above).



0 user(s) are reading this topic

0 members, 0 guests, 0 anonymous users