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Introduction 
 

Metformin (1,1-dimethylbiguanide) is an oral drug used for the treatment of type 2 diabetes 

and polycystic ovary syndrome (PCOS). It belongs to a category of drugs known as 
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biguanides but metformin is the only one of this class that remains in clinical use. Metformin 

is, unless contra-indicated, the first line treatment for type 2 diabetes to which other drugs 

can be added if needed to achieve the desired level of blood sugar control (Inzucchi et al., 

2015). In addition metformin has been included in the World Health Organization’s (WHO) 

list of essential medicines. Nearly 120 million metformin prescriptions are filled worldwide 

each year making metformin one of the most sold drugs (Dowling et al., 2011). Metformin is 

so popular because it’s relatively safe, efficient, and costs only cents per dose.   

 

 
Figure 1 Some of the molecules mentioned in this article. Notice that all molecules share the 

same guanidine moiety. 

 

During the Middle Ages physicians prescribed Galega 

officinalis, better known as goat’s rue, the French lilac, 

Italian fitch, Spanish sanfoin or false indigo, to treat the 

intense urination in people suffering from type 2 diabetes 

(Fig. 2). The active ingredient in this plant is galegine or 

isoamylene guanidine but this is too toxic for therapeutic 

use. In fact the name goat’s rue refers to the fact that this 

plant can be deadly when eaten by grazing sheep or 

goats. In 1926 two synthetic molecules were discovered 

that have chemical similarity to the active ingredient of G. 

officinalis, termed synthalins A and B. These two synthetic 

molecules were better tolerated and more efficient but still 

had some toxicity. The discovery of insulin eventually lead 

to a discontinuation of the synthalins in the early 1930s. In 

1929 several biguanides were synthesised including 

metformin but it was not until 1956 until the antidiabetic 

properties of these compounds would be investigated by 

French researcher Jean Sterne. Sterne proposed the 

name ‘Glucophage’, which is still a brand name of 

metformin until this day. In the following years two more 

Figure 2 Galega officinalis. 
Credit JoJan on Wikimedia 
Commons 
(https://commons.wikimedia.org/
wiki/File:Galegaofficinalis03.jpg). 
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biguanides were developed: buformin and phenformin (Witters, 2001; Bailey and Day, 2004). 

Buformin and phenformin have been withdrawn from the market due to concerns about the 

increased risk of lactic acidosis (see below). The concern about lactic acidosis kept 

metformin from the US market until it was finally approved in 1995. 

 

The first paper in Pubmed that contains the search term “metformin” was published in 1959. 

Remarkably, it took until 1991 before the milestone of 50 papers/year was reached. Just 5 

years later this had grown to 100 papers a year and from then on it kept growing, reaching 

1717 papers in 2016 (Fig. 3). That’s almost 5 new papers every day!   

 

 
Figure 3 Metformin citations in Pubmed. Search conducted on 1st April, 2017. 

 

Metformin’s effects on lifespan 
 

To provide an easy overview of metformin’s effects on lifespan, I have summarized the data 

in three tables (see below). Table 1 summarizes data in simple organisms, Table 2 in 

rodents and Table 3 summarizes human data.  

 

Simple organisms 

 

In yeast chronological lifespan was extended in two studies (Borklu-Yucel et al., 2015; Kazi 

et al., 2017) but not in a third one (Choi et al., 2013). In a recently-published paper Kazi et al. 

(2017) show that metformin extends the chronological lifespan of yeast. To the best of my 

knowledge three studies have been published examining the effect of metformin on lifespan 

in the roundworm C. elegans (Cabreiro et al., 2013; De Haes et al., 2014; Onken and 

Driscoll, 2010). A fourth paper has investigated the effect of buformin (Bakaev et al., 2002). 

C. elegans is one of the most studied model organisms in aging research and the organism 

in which the first life extending mutations were discovered. Furthermore, the roundworm is 

also a popular model to study the effect of various pharmacological treatments on lifespan. 

In 2010 Onken and Driscoll demonstrated that exposure of C. elegans to 50 millimolar (mM) 
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metformin increased median lifespan by about 40%. However maximal lifespan was not 

increased. Metformin treatment also the slowed age-related decline in locomotory activity 

suggesting an improved healthspan. De Haes et al. (2014) found that the lifespan of C. 

elegans reached an optimum at 25 mM metformin (25% increase in mean lifespan). 

Concentrations of 50 mM or above resulted in a non-significant extension of mean lifespan. 

Surprisingly enough old worms also start to develop “wrinkles”. This disorganization of the 

“skin” (called the cuticle) was prevented by metformin treatment. Finally, David Gems and 

colleagues conducted a large number of lifespan tests in C. elegans with metformin and 

phenformin. This group discovered a dose-dependent increase in lifespan with an optimal 

lifespan extension achieved at 50 mM (36% increase in mean lifespan). A higher dose had a 

significant smaller effect (only 3% increase in mean lifespan at 100 mM). The authors further 

demonstrated that phenformin similarly increased lifespan and that metformin administration 

from middle age onwards resulted in a modest increase in lifespan (8% at 25 mM). The 

surprising result from this study however was the finding that metformin reduced lifespan in 

the absence of living bacteria.              

 

In the fruit fly Drosophila melanogaster no effect of metformin on lifespan was found at low to 

moderate dosages and at high dosages lifespan was decreased (Jafari et al., 2007; Slack et 

al., 2012; Shirazi et al., 2014). However it did rescue the shortened lifespan of amyloid-β 

overexpressing flies (Niccoli et al., 2016). Amyloid-beta is an aggregation-prone protein that 

forms the plaques found in the brain of Alzheimer’s disease patients (see below). 

Furthermore, metformin reduced mortality in obese flies infected with a mold (R. oryzae). 

Metformin however did not improve survival in obese non-infected flies even though it did 

induce weight loss (Shirazi et al., 2014). Finally, metformin significantly extended the mean 

and maximum lifespans of male and female crickets (Hans et al., 2015). 

 

Biguanide Model Concentration Lifespan Reference 

Metformin Baker’s 
yeast 

1 nM to 1mM No effect on chronological 
lifespan 

Choi et al., 
2013 

Metformin Baker’s 
yeast 

0.5 mM to 100 
mM 

Chronological lifespan was 
extended between 10 mM 

to 100 mM. 

Borklu-Yucel 

et al., 2015  

Metformin Baker’s 
yeast 

25 mM  Chronological lifespan was 
extended by 20-25%  

Kazi et al., 

2017 

Buformin Roundworm 
C. elegans 

0.00001 mg/ml 
to 1 mg/ml 

Optimal lifespan extension 
at 0.1 mg/ml: 23% 

increase in mean lifespan 
and 26% increase in 
maximum lifespan.  

Bakaev et al., 

2002 

Metformin Roundworm 
C. elegans 

1 mM, 10 mM, 
and 50 mM 

At 50 mM metformin 
median survival is 

increased by about 40%. 
No effect at 1 mM and 10 

mM.  

Onken and 

Driscoll, 2010 
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Metformin Roundworm 
C. elegans 

50 mM Multiple independent 
lifespan studies. Mean 

lifespan extension 
between 13% and 57%. 

De Haes et 

al., 2014 

Metformin Roundworm 
C. elegans 

25 mM to 100 
mM 

Mean lifespan was 
extended by 18% (25 

mM), 36% (50 mM), and 
3% (100 mM)   

Cabreiro et al., 

2013 

Metformin Fruit flies 0.4 mg/mL, 0.8 
mg/mL or 1.6 
mg/mL in diet 

No effect on mortality rate Jafari et al., 
2007 

Metformin Fruit flies 1 mM to 100 
mM 

No effect for male flies 
between 1mM and 50 mM 
but a significant decrease 
upon 100 mM. No effect 
for female flies between 
1mM and 10 mM but a 
significant decrease at 
higher concentrations. 

Slack et al., 

2012 

Metformin Normal 
weight fruit 

flies 

5 mM to 100 
mM 

There was a dose-
dependent reduction in 
survival. However, the 
authors did not report a 

statistical analysis.  

Shirazi et al., 

2014 

Metformin Obese fruit 
flies 

5 mM to 100 
mM 

There was a dose-
dependent reduction in 
survival. However, the 
authors did not report a 

statistical analysis.  

Shirazi et al., 

2014 

Metformin Female 
cricket 

1.78 x 10-3 g 
metformin/g 

food 

Mean: +47% 
Max: +45% 

Hans et al., 

2015 

Metformin Male cricket 1.78 x 10-3 g 
metformin/g 

food 

Mean: +39% 
Max: +35% 

Hans et al., 

2015 

Table 1 Effect of biguanides on lifespan in simple organisms. 

 

Rodents  

 

The first study examining the effect of a biguanide on lifespan dates from 1980. Dilman and 

Anisimov (1980) studied the effect of phenformin on the lifespan of female C3H/Sn mice and 

found that mean lifespan was extended by 23%. In 2003 these authors published a review in 

which they re-analyzed all the lifespan data that their lab had produced on biguanides since 

the 1980s (Anisimov et al., 2003). According to this new analysis phenformin extended the 

mean (21.1%) and the maximal (26%) lifespan of the female C3H/Sn mice. It also increased 

the mean lifespan of the oldest 10% of survivors by 28.4%. The reason for using the mean 
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lifespan of the last 10% survivors is because this particular measure of maximal lifespan is 

less susceptible to single outliers compared to just reporting the lifespan of the oldest 

individual in the study. Increased lifespan however does not mean that aging is slowed. It 

could for example be that the treatment reduces young mortality while having no effect on 

the age-related increase in mortality (= aging). Therefore the authors also studied several 

measures of population aging including the time needed for the mortality rate to double and 

the rate of aging. Phenformin treatment resulted in a decline in the aging rate of 31.2% while 

the mortality rate doubling time was increased 1.45-fold. Both of these measures indicate 

that metformin increased lifespan by slowing down aging. Phenformin had no effect on mean 

lifespan in outbred female LIO rats but it did increase the maximum lifespan (9.8%) and 

mean lifespan of the oldest 10% survivors (10.1%). In this study phenformin also failed to 

impact measures of the aging rate (Anisimov, 1982; Anisimov et al., 2003).  

 

Buformin was shown to increase mean lifespan (7.3%), maximum lifespan (5.5%), and mean 

lifespan of the oldest 10% survivors (12%). Buformin treatment was shown to decrease the 

rate of aging and to cause a 1.49-fold reduction in tumor incidence (Anisimov, 1980; 

Anisimov et al., 2003).  

 

Nine studies have been published examining the effect of metformin on lifespan in rodents 

(see table 2). As can be seen in figure 4 metformin largely had a positive effect on mean or 

median lifespans. Though one study found a significant decrease of 13.4% in male 129/Sv 

mice (Anisimov et al., 2010). Maximum lifespan was also extended in several studies. 

 

The effect of metformin on lifespan may be age-, gender-, strain-, and dose-dependent (see 

Table 2). The combination of metformin and rapamycin may extend lifespan more than either 

drug alone (Strong et al., 2016). Interestingly, long-term rapamycin treatment causes some 

side effects (glucose intolerance and hyperlipidemia) which could be improved by metformin 

treatment (Bulterijs, 2011).  

 

 
Figure 4 Mean or median changes in lifespan by metformin in rodents. The asterisks 

indicate significance by whatever criteria applied in the original paper. 1-15 refers to the 

order in which the metformin data have been tabled in table 2. One data point, a 14.4% 

decrease in lifespan in male C57BL/6 mice was censored because the dose used (1% of 

diet) was toxic while lifespan was extended in that same study by the low (0.1%) dose. 



 
 
Sven’s Science Column                                                                                          April 2017 
 
LongeCity.org   

7 
 

 

Biguanide Model Lifespan Cancer incidence Reference 

Phenformin Female 
C3H/Sn 

mice 

Mean: + 21.1% 
Max: +26%  

Max (10%): +28.4% 

3.8-fold decrease in 
mammary 

adenocarcinomas  

Dilman and 
Anisimov, 1980 

Female 
outbred LIO 

rats 

Mean: no effect 
Max: +9.8% 

Max (10%): +10.1% 

No effect on 
spontaneous 

cancer incidence 

Anisimov, 1982 

Buformin Female LIO 
rats 

Mean: +7.3% 
Max: +5.5% 

Max (10%): +12% 

1.49-fold decrease 
in tumor incidence 

Anisimov, 1980 

Metformin FVB/N 
HER2/neu 

mice 

Mean: +8% (NS) 
Max: +16.2% 

Max (10%): +13.1%  

Metformin 
decreased the 
incidence and 

reduced tumor size 
of breast cancer  

Anisimov et al., 
2005 

Female 
SHR mice 

Mean: +37.8% 
Max: +10.3% 

Max (10%): +20.8% 

No effect on 
spontaneous 

cancer incidence 

Anisimov et al., 
2008 

Female 
FVB/N 

HER2/neu 
mice 

Mean: +7% (NS) 
Max: -9.3% 

Max (10%): -11% 

Metformin slows 
down the 

development of 
breast cancer 

Anisimov et al., 
2010a 

Male 
129/Sv 
mice 

Mean: -13.4% 
Max: no effect 

Max (10%): no effect 

No effect Anisimov et al., 
2010b 

Female 
129/Sv 
mice 

Mean: +4.4% 
Max: no effect 

Max (10%): no effect 

3.5-fold reduction in 
malignant tumors. 

Anisimov et al., 
2010b 

Fischer-344 
rats 

Mean: no effect 
Max: no effect 

Max (10%): no effect 

Not Smith et al., 
2010 

Female 
SHR mice 

(started at 3 
months of 

age) 

Mean: +14.1% (NS) 
Max: +3% (NS) 

Max (10%): no effect 

The first animal to 
die from cancer in 

the metformin 
group was 22% 

older than that from 
the control group.  

Anisimov et al., 
2011 

Female 
SHR mice 

(started at 9 
months of 

age) 

Mean: +6.1% (NS) 
Max: -9% (NS) 

Max (10%): -8% 
(NS) 

The first animal to 
die from cancer in 

the metformin 
group was 25% 

older than that from 
the control group.  

Anisimov et al., 
2011 
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Female 
SHR mice 
(started at 
15 months 

of age) 

Mean: no effect 
Max: no effect 

Max (10%): no effect 

The first animal to 
die from cancer in 

the metformin 
group was 5% older 
than that from the 

control group.  

Anisimov et al., 
2011 

Male 
C57BL/6 

mice (0.1% 
metformin) 

Mean: +5.8% No data Martin-Montalvo 
et al., 2013 

Male 
C57BL/6 
mice (1% 

metformin) 

Mean: -14.4% (toxic 
dose)  

No data Martin-Montalvo 
et al., 2013 

Male 
B6C3F1 

mice 

Mean: +4.15% (NS) No data Martin-Montalvo 
et al., 2013 

Male 
129/Sv 

(neonatal) 

Mean: +20% 
Max: +3.5% (NS) 

Max (10%): +3.2% 

No effect Anisimov et al., 

2015 

Female 
129/Sv 

(neonatal 
metformin) 

Mean: -9.1% (NS) 
Max: -3.8% (NS) 

Max (10%): -3.3% 
(NS) 

No effect Anisimov et al., 

2015 

Male UM-
HET3 

Median: +7% (NS) No data Strong et al., 

2016 

Female 
UM-HET3 

Median: no effect No data Strong et al., 

2016 

Table 2 Effect of the different biguanides on lifespan and cancer incidence in rodents. The 

data for the older Anisimov studies have been derived from the 2003 re-analysis (Anisimov 

et al., 2003). No effect signifies that the effect was less than the arbitrary chosen value of 

3%. (NS) means not significant by whatever definition used in the original paper. 

 

Human data 

 

In the UK Prospective Diabetes Study (UKPDS) the patients treated with metformin had a 

36% reduction in all-cause mortality compared to conventional therapy based on diet and 

exercise. In contrast patients in this trial who received sulfonylurea/insulin therapy only had 

an 8% reduction in all-cause mortality. Metformin was also superior in reducing diabetes-

related death, myocardial infarction and stroke compared to sulphonylurea/insulin therapy 

(UK Prospective Diabetes Study Group, 1998). 

 

Multiple trials show that metformin lowers mortality when compared to other interventions 

(table 3). Surprisingly enough, Bannister et al. (2014) found that mortality in type 2 diabetes 

patients treated with metformin was lower than in non-diabetic controls.  
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Metformin 
compared with 

Study period Outcome Reference 

Diet/Exercise Average follow-up 
10.7 years 

36% reduction in all-
cause mortality 

compared to 
conventional 

treatment 

UK Prospective 

Diabetes Study 

Group, 1998 

Sulfonylurea Average follow-up 
5.1 years  

Odds ratio of 0.60 
for metformin over 
sulfonylurea for all-

cause mortality 

Johnson et al., 2002 

 

Sulfonylurea (meta-
analysis) 

24 weeks to 10.7 
years 

No difference Hemmingsen et al., 

2014 

Conventional 
therapy 

10 year follow-up of 
UKPDS study 

27% reduction in all-
cause mortality 

Holman et al., 2008 

Non-diabetics Average follow-up 
2.8 years 

Median survival time 
was 15% lower in 

non-diabetics 

Bannister et al., 

2014 

Non-use of 
metformin 

Study period was 
just over 7 years 

41% reduction in all-
cause mortality  

Hippisley-Cox, 2016 
 

Insulin  Average follow-up 
3.5 years  

Hazard ratio of 0.60 
for metformin + 

insulin over insulin 
monotherapy for all-

cause mortality 

Holden et al., 2016 

Table 3 Effect of metformin compared to other treatments on mortality in diabetes patients. 

 

The Targeting Aging with Metformin (TAME) trial will enrol roughly 3,000 elderly (65-79 

years old). This placebo-controlled, randomized clinical trial will investigate the effect of 

metformin on a composite outcome that includes cardiovascular events, cancer, dementia, 

and mortality (Barzilai et al., 2016).  

 

The Me.Me.Me trial is a phase III randomized controlled trial in which the effect of metformin-

treatment on the risk for age-related non-communicable chronic diseases will be investigated 

in people who suffer from metabolic syndrome but are otherwise healthy (Pasanisi et al., 

2017). 

 

Finally, the Metformin in Longevity Study (MILES) will test metformin in older adults with 

impaired glucose tolerance and investigate if the gene expression profile becomes more 

similar to that of young healthy subjects (ClinicalTrials.gov Identifier: NCT02432287).  
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Metformin as a CR mimetic 
 

Calorie restriction (CR) is the most robust experimental method to increase lifespan. It has 

been demonstrated to increase lifespan in a wide variety of model organisms from yeast to 

monkeys (Fontana et al., 2010). CR mimetics are drugs that mimic the beneficial effects of a 

calorie restricted diet without reducing calorie intake (Madeo et al., 2014).  

 

Stephen Spindler and colleagues tested the effect of metformin on gene expression in the 

livers of mice. Eight weeks of metformin treatment reproduced 75% of the gene expression 

changes observed in long term calorie restriction (CR). In comparison eight weeks of CR 

only reproduced 71% of gene expression changes observed in long term CR. These data 

support the idea that metformin works as a CR mimetic (Dhahbi et al., 2005; Spindler, 2006). 

These data were later confirmed in the livers and muscles of animals treated with metformin 

for 30 months (Martin-Montalvo et al., 2013).  

 

Metformin and CR also share some other similarities. Both reduce oxidative stress (Sohal 

and Weindruch, 1996), lower insulin/IGF-1 signaling (Hursting et al., 2013), increase SIRT1 

activity (Chen et al., 2008), activate autophagy (Wohlgemuth et al., 2007), and reduces 

inflammation (González et al., 2012). Furthermore, metformin and calorie restriction share a 

high similarity in the diseases improved by them. Both interventions decrease the risk for 

cardiovascular disease (Weiss and Fontana, 2011), cancer (Hursting et al., 2013), type 2 

diabetes (Prasannarong et al., 2012), while increasing the risk for amyotrophic lateral 

sclerosis (ALS) in a mouse model (Pedersen and Mattson, 1999; Patel et al., 2010). Only 

references for calorie restriction are given as the effect of metformin on these molecular and 

pathophysiological markers has been discussed in great detail in the sections below.  

The metabolic effects of CR and metformin show major differences (Bulterijs, 2011). CR 

increases fatty acid synthesis (Weindruch et al., 2001), cholesterol biosynthesis (Pedroso et 

al., 2014), and gluconeogenesis (Weindruch et al., 2001) while metformin has the opposite 

effect (see below). 

 

Protective effects of metformin on diseases 
 

Given that metformin is used for the treatment of type 2 diabetes it is unnecessary to discuss 

that here. It’s sufficient to point out that metformin has not only been shown to be useful for 

the treatment of type 2 diabetes but is also effective in reducing the risk for the development 

of type 2 diabetes in high risk patients (such as those suffering from metabolic syndrome) 

(Hostalek et al., 2015).  

 

Cancer 

 

Various animal studies have shown that metformin reduces spontaneous and induced (such 

as by exposure to carcinogens) cancers as well as reducing cancer incidence in animals that 

are genetically susceptible to cancer (Anisimov et al., 2005a & b; Eikawa et al., 2015; Zhang 

et al., 2016). Metformin was shown to decrease the rate of proliferation and induce cell cycle 

arrest in ovarian cancer cells in culture. Furthermore, metformin pre-treatment reduced the 

number of tumor implants by 60% in mice that were injected with an ovarian cancer cell line 

(Lengyel et al., 2014). Surprisingly, metformin treatment reduced several stemness markers 
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as well as spheroid body formation in breast and ovarian cancer cells. This suggests that 

metformin may reprogram cancer cells into non-cancer cells (Hu et al., 2014). Metformin has 

also shown promise as an adjuvant to other cancer treatments. For example, metformin 

sensitizes non-small lung cancer cells (Storozhuk et al., 2013), liver cancer cells (Liu et al., 

2012), pancreatic cancer (Wang et al., 2015), breast cancer, connective tissue cancer cells, 

and cancer stem cells (Song et al., 2012) to ionizing radiation. Similarly, metformin has also 

been shown to increase the effectiveness of chemotherapy (Hirsch et al., 2009; Iliopoulos et 

al., 2011; Rocha et al., 2011; Dong et al., 2012; Lin et al., 2013). However, metformin 

reduced cisplatin-mediated apoptosis of multiple cancer cell lines with the sole exception of 

a mouse melanoma cell line in which metformin stimulated cisplatin-induced cell death 

(Janjetovic et al., 2011). These data may suggest that metformin’s effect on cancer is 

dependent on the cancer type. Also the activation of AMPK by metformin could possibly 

improve survival of cancer cells in established tumors by protecting these cells from 

metabolic stress (Pryor and Cabreiro, 2015).  

 

Metformin treatment appear to protect healthy tissues from chemotherapy-induced damage. 

For example, metformin prevented chemotherapy-induced cognitive impairment in mice 

(Zhou et al., 2016a). Furthermore, metformin protected mice from chemotherapy-induced 

peripheral neuropathy (Mao-Ying et al., 2014). Finally, metformin was shown to reduce the 

toxic effect of the chemotherapy drug doxorubicin on the heart (Kelleni et al., 2015).  

 

Zhang et al. (2016) have synthesized approximately 140 biguanides and screened them for 

high affinity for OCT1 and OCT3 (uptake in cells) but low affinity for OCT2 (urine excretion). 

This resulted in the identification of NT1014 which showed much higher potency compared 

to metformin for growth inhibition of ovarian cancer cells. Another novel biguanide, N1-hexyl-

N5-benzyl-biguanide mesylate (HBB), showed much higher potency compared to metformin 

against breast cancer cells (Guo et al., 2014). Metformin derivatives in which the methyl side 

chain is replaced by a longer alkyl chain terminated by a mitochondrial-targeted cation 

(PPh3
+) have a much higher potency against cancer (Kalyanaraman et al., 2017). For 

example, Mito-Met10 was 100-fold more potent than phenformin in pancreatic cancer cells 

(Cheng et al., 2016). 

 

Multiple epidemiologic studies demonstrate that type 2 diabetes patients treated with 

metformin have a lower risk for cancer compared to those on other anti-glycemic treatments 

(Evans et al., 2005). In a systematic review of 41 observational studies it was found that 

metformin use is associated with a lower risk of cancer death, incidence of any cancer, as 

well as multiple specific cancer locations (liver, colorectal, pancreas, stomach, esophagus) 

but not in others (breast, lung, ovarian, uterus, prostate, bladder, kidney, and melanoma) 

(Franciosi et al., 2013). Gandini et al. (2014) conducted a meta-review on cancer risk and 

mortality in people treated with metformin. Overall cancer risk was reduced by 31% and 

overall cancer mortality by 34% but between study heterogeneity was large. Thakkar et al. 

(2013) equally found a 30% reduction in cancer risk in a meta-analysis of cohort studies. 

However, when case-control studies were analysed the benefit dropped to 10% and no 

effect was found when randomized, placebo-controlled trials were analysed. Two other 

meta-reviews of randomized controlled trials equally found no effect of metformin on cancer 

(Stevens et al., 2012; Franciosi et al., 2013). In another meta-analysis that combined cohort, 

case-control, and randomized controlled trials it was found that metformin was associated 

with a lower cancer risk (Wu et al., 2015a). A subgroup analysis looking at metformin 
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monotherapy did find a 16% lower cancer risk but this did not reach significance (Stevens et 

al., 2012). A major limitation of these systematic reviews on randomized controlled trials is 

that the average follow-up is very short. The average follow-up of studies included in the 

Stevens et al. (2012) meta-analysis was just 4.1 years and for mortality it was even only 2.8 

years. Another limitation of  trials is that they cannot make the distinction between a reduced 

cancer risk from metformin versus an increased cancer risk from other anti-glycemic 

treatments. 

 

Metformin users had a significant better survival and reduced the risk of cancer recurrence in 

hepatocellular carcinoma after liver resection (Seo et al., 2016; Chan et al., 2017). In 

contrast, Bhat et al. (2014) found no improvement in survival by metformin in newly 

diagnosed patients with hepatocellular carcinoma. Metformin failed to improve survival in 

patients with advanced pancreatic cancer in a double-blind, randomized, placebo controlled 

phase 2 trial (Kordes et al., 2015). 

 

Lewis Cantley, director of the Cancer Center at Beth Israel Deaconess Medical Center, told 

Gary Taubes in an interview that “Metformin may have already saved more people from 

cancer deaths than any drug in history” (Taubes, 2012). However, the data from randomized 

placebo-controlled trials to support a metformin-induced reduction in cancer risk and/or 

mortality remains low. There’s also a clear lack of studies in non-diabetic patients. Multiple 

clinical studies are currently ongoing that will hopefully provide better evidence about 

metformin’s effectiveness in treating cancer (Chae et al., 2016). 

 

Cardiovascular disease 

 

Metformin treatment improved several classical measures of cardiovascular health including 

reductions in total cholesterol, low-density lipoprotein (LDL) cholesterol, lipoprotein(a), and 

Apo B levels in women suffering from PCOS syndrome (Kilicdag et al., 2005). However in 

the same study it was also found that metformin treatment lead to a decrease in high-density 

lipoprotein (HDL) cholesterol, which is generally considered to be protective against 

atherosclerosis. Metformin decreased total cholesterol, triglycerides, LDL, and VLDL in 

patients with metabolic syndrome (Paul et al., 2016). Metformin therapy initiated after 

myocardial infarction in patients without known diabetes resulted in a slight decrease of LDL 

levels and a decrease in LDL particle size (Eppinga et al., 2016). Six months of metformin 

therapy had no effect on LDL and HDL concentrations in normoinsulinemic PCOS patients 

(Romualdi et al., 2008). The effect of metformin may be race dependent as a one-year 

treatment with metformin lead to an increase in HDL cholesterol in Caucasian and African-

American but not in Hispanic pre-diabetics (Zhang et al., 2015a). Other studies have also 

found that metformin increases HDL cholesterol levels (Wu et al., 1990). Metformin 

treatment has been shown to increase homocysteine levels (see below). In another study in 

patients suffering from a genetic abnormality in cholesterol metabolism (type II B 

hyperlipidemia) that leads to high blood levels of triglycerides and LDL cholesterol it was 

found that metformin therapy resulted in a decrease in total cholesterol and LDL cholesterol 

levels (Pentikäinen et al., 1990). In a systematic review of 41 studies, with a combined 

number of over 3,000 patients, it was found that metformin treatment resulted in a decrease 

in plasma triglycerides, total cholesterol, and LDL cholesterol. However the decrease in 

triglycerides could be attributed to the metformin-induced decrease in blood glucose levels 

and hence metformin had no direct effect on triglyceride metabolism. Metformin had no 
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effect on blood pressure nor on HDL cholesterol (Wulffelé et al., 2004). Metformin decreased 

serum lipoprotein(a) levels in some (Velazquez et al., 1997; Bell and Ovalle, 1998; Kilicdag 

et al., 2005) but not all studies (Landin et al., 1994; Testa et al., 1996).   

 

Metformin inhibits the insulin-stimulated synthesis of plasminogen activator inhibitor-1 (PAI-

1) (Anfosso et al., 1993). Metformin also reduces PAI-1 levels in HIV patients (Hadigan et 

al., 2001) and in women suffering from PCOS syndrome (Tan et al., 2009). In cultured 

endothelial cells, metformin treatment protected against oxidized LDL-induced increases in 

oxidative stress, apoptotic cell death, and restored eNOS activity (Hung et al., 2016). 

Metformin also reduced palmitic acid-induced lipid accumulation in cultured macrophages 

(Song et al., 2010). Metformin also inhibits the monocyte to macrophage differentiation 

which contributes to the inflammatory environment inside atherosclerotic plaque. 

Furthermore, metformin reduced plaque formation in an Ang-II-induced atherogenesis  

ApoE-/- mice model (Vasamsetti et al., 2015). Metformin treatment significantly reduced the 

progression of aortic atherosclerosis in a rabbit model (Li et al., 2009). AMPK activators, 

such as metformin, have also been found to shift the polarization of macrophages from the 

proinflammatory M1 to the anti-inflammatory M2 state (Hattori et al., 2015). Indeed, 

metformin has been shown to reduce the secretion of various proinflammatory cytokines 

from macrophages (see below). Furthermore, C-reactive protein (CRP) levels are reduced 

by metformin treatment (see below). Metformin significantly increased the flow-mediated 

dilatation of the brachial artery in normoinsulinemic PCOS patients indicating an 

improvement in endothelial function (Romualdi et al., 2008). 

 

Metformin-treatment leads to a decrease in vitamin B12 and folic acid levels (see below). 

Vitamin B12 and folic acid are involved in the biochemical conversion of homocysteine to 

methionine (Selhub, 1999). Hence a metformin-induced B12 and folic acid deficiency could 

impair this conversion and lead to an increase in homocysteine levels. Homocysteine has 

emerged as a new risk factor for cardiovascular disease (Refsum et al., 1998; Humphrey et 

al., 2008) and dementia (Seshadri et al., 2002; Wald et al., 2011). Multiple studies have 

confirmed higher homocysteine levels in patients using metformin (Hoogeveen et al., 1997; 

Wile and Toth, 2010). Furthermore, intervention studies have also found that metformin 

increases serum homocysteine levels (Carlsen et al., 1997; Kilicdag et al., 2005; Sahin et al., 

2007; Wulffelé et al., 2003). However, some studies have failed to observe an effect of 

metformin on homocysteine levels (Pongchaidecha et al., 2004; Yilmaz et al., 2005). 

Furthermore, several intervention studies have failed to observe a decrease in 

cardiovascular events or mortality by vitamin B12 and folic acid supplementation despite 

significant reductions in homocysteine levels (Toole et al., 2004; Bonaa et al., 2006; Lonn et 

al., 2006; Martí-Carvajal et al., 2013).  

 

In the UK Prospective Diabetes Study (UKPDS) metformin treatment reduced the risk of 

myocardial infarction by 39% over a 10 year period compared to conventional treatment. 

When mortality from all macrovascular causes (myocardial infarction, sudden death, angina, 

stroke, and peripheral disease) was combined then the metformin group had a 30% lower 

risk compared to the conventional treatment. However, it should be pointed out that 

macrovascular mortality in the metformin group did not differ from the other intensive therapy 

groups hence it could be that metformin’s effect on macrovascular disease risk reduction is 

solely due to a reduction in blood glucose levels and not to a specific benefit of metformin 

itself (UK Prospective Diabetes Study Group, 1998). Metformin does not reduce high blood 
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sugar levels in normoglycemic individuals hence it remains unclear if metformin could have a 

beneficial effect on cardiovascular disease in people without diabetes.  

 

A ten-year follow-up of the UKPDS study confirmed that those on metformin therapy still had 

a lower risk of heart disease (33% reduced compared to the conventional treatment group) 

(Holman et al., 2008). Metformin did not associated with an improvement in an aggregate of 

micro- and macrovascular morbidity and mortality in a randomized placebo-controlled trial 

with a follow up of 4.3 years. However, metformin did reduce the risk for macrovascular 

disease (Kooy et al., 2009). Metformin monotherapy was associated with a lower risk of 

cardiovascular morbidity and mortality in a retrospective cohort analysis of new users of oral 

antiglycemic drugs when compared to sulphonylurea monotherapy (Johnson et al., 2005). 

Metformin had no effect on cardiovascular events when compared to other antiglycemic 

drugs while it did cause a significant reduction when compared to placebo or no therapy in a 

meta-analysis. By using a meta-regression the authors found that metformin appears to be 

more effective in trials of longer duration and in trials with lower minimum and maximum age 

(i.e. in younger patients) (Lamanna et al., 2011). 

 

Patients who suffered from ischaemic cardiomyopathy were given either metformin or a 

placebo for three years. Most but not all patients in the trial had type 2 diabetes or impaired 

glucose tolerance. The incidence of reinfarction, occurrence of angina pectoris, acute 

cardiovascular events, and deaths were lower in the metformin group. The largest reduction 

was found in reinfections (8.9% in the control group versus only 1.6% in the metformin 

group) (Sgambato et al., 1980). Metformin increases survival of worms exposed to long-term 

anoxia (LaRue and Padilla, 2011).  

 

Twelve weeks of metformin treatment also reduced infarct size and improved the 

preservation of left ventricular ejection fraction in rats after an experimentally-induced 

myocardial infarction (Yin et al., 2011). Others have also observed that metformin improved 

cardiac function after an experimental-induced heart failure in rats (Wang et al., 2011a), 

mice (Gundewar et al., 2009; Sun and Yang, 2017) and dogs (Sasaki et al., 2009). 

Interestingly, Gundewar et al. (2009) reported that metformin therapy started at the time of 

ischemia induction and continued for 4 weeks improved survival by 47%. Metformin started 1 

week after the experimental-induction of ventricular hypertrophy and continued for 8 weeks 

resulted in an improvement of haemodynamic function and a significant reduction in 

ventricular hypertrophy (Zhang et al., 2011). The AMPK activator AICAR similarly prevented 

cardiac hypertrophy (Li et al., 2007; Meng et al., 2011). 

 

Aneurysms  

 

Aneurysms are weakened spots in the vascular wall that give rise to blood-filled bulges. The 

rupture of an aneurysm can be fatal depending on its location in the body. Especially deadly 

are aneurysms in the Circle of Willis in the brain, in the aorta, and in the abdominal aorta. 

Hsu et al. (2016) analysed data extracted from the Taiwanese National Health Insurance 

Research Database and found that metformin use was associated with a lower risk of aortic 

aneurysms. Fujimura et al. (2016) found that metformin use by diabetic patients was 

associated with a decreased enlargement of aneurysms in the abdominal aorta. 

Furthermore, the association was dose-dependent. Metformin also reduced the incidence of 

aortic aneurysms in an Ang-II-induced ApoE-/- mice model (Vasamsetti et al., 2015).      
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Stroke  

 

Metformin (50 mg/kg/day) administered to newly born rats protected against the damaging 

effects of experimentally-induced ischemia on the brain. More specifically metformin 

attenuated the behavioral deficits, improved spatial learning, increased oligodendrocyte 

progenitor cell proliferation and promoted the recovery of normal myelin sheet architecture 

(Qi et al., 2016). A single dose of metformin 24h before the induction of experimental stroke 

significantly reduced infarct volume by 29% as well as neurological deficits (Jiang et al., 

2014a). Metformin treatment started 24 h after stroke promoted functional recovery, pushed 

the microglia/macrophages to an anti-inflammatory M2 phenotype, increased angiogenesis 

and neurogenesis (Jin et al., 2014). Metformin administration for three weeks starting 24 h 

after the experimental induction of a stroke in mice improved stroke-induced behavioral 

deficits and enhanced the formation of new blood vessels in the damaged tissue (Venna et 

al., 2014). In another study metformin therapy was started at the time of reperfusion (ie: 

directly after the experimental stroke). Here it was found that metformin therapy significantly 

reduced the ischemia-induced brain atrophy volume. Furthermore, metformin also induced 

angiogenesis and neurogenesis (Liu et al., 2014a). Metformin reduced infarct size, improved 

neurobehavioral outcomes, and decreased blood-brain barrier permeability in an 

experimental stroke model when given for 14 days after stroke (Liu et al., 2014b). 

 

Cheng et al. (2014) used data from the Taiwan National Health Research Institute database 

to investigate the effect of metformin use on stroke risk in diabetic patients. After a 4-year 

follow up, metformin use was associated with a significant decrease in the risk for stroke 

(Hazard Ratio: 0.468). Mima et al. (2016) found that neurological severity of stroke was 

lower in type 2 diabetes patients treated with metformin compared to those on other 

treatments.  

 

Autoimmune diseases   

 

Autoimmune diseases are diseases in which the immune system attacks self-antigens 

leading to tissue damage. Common autoimmune diseases include type 1 diabetes mellitus, 

rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease.  

 

Rheumatoid arthritis (RA) is a disease characterized by inflammation of the joint followed by 

its destruction. Inflammation is a key part of the pathophysiology of RA and treatment 

consists of various anti-inflammatory drugs. Metformin has been shown to have anti-

inflammatory properties (see below) and hence may be useful in the treatment of RA. 

Indeed, metformin significantly reduced the severity of arthritis in a mice model of RA (Son et 

al., 2014). 

 

Anecdotally, I would like to mention the case of a friend of mine whose grandmother had 

suffered from RA for 38 years. She had swollen and painful joints despite being on anti-

inflammatory drugs. At the advice of her grandson in June 2014 she implemented dietary 

changes and started taking various supplements (including metformin). Her condition 

improved in the months after the start of the treatment and she is currently off the anti-

inflammatory medications and nearly free of pain. While she used to struggle with walking 

the stairs in her home she now regularly walks several kilometres without problems.   
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Metformin delayed the onset and attenuated the disease progression in a mouse model of 

multiple sclerosis (Nath et al., 2009). Metformin ameliorated experimental autoimmune 

encephalomyelitis, an experimental model of autoimmune-induced brain inflammation 

believed to mimic human diseases such as multiple sclerosis (Sun et al., 2016). Metformin 

treatment also ameliorated inflammatory bowel disease (IBD) in a DSS-induced (Lee et al., 

2015) and a genetic-induced (Xue et al., 2016) IBD mouse model. Metformin suppressed the 

induction of the autoimmune phenotype and reduced autoantibody production in a mouse 

model of lupus (Lee et al., 2017). The combination of metformin and the inhibitor of glucose 

metabolism, 2-deoxy-D-glucose, significantly reduced the enlargement of the spleen, 

inhibited the autoantibody production, and reversed T-cell activation in the TC mouse model 

of lupus (Yin et al., 2015). Furthermore, metformin reduced clinical flares of lupus in a proof-

of-concept clinical trial (Wang et al., 2015a).   

 

Several clinical trials with metformin for autoimmune diseases are currently ongoing: Graves 

disease (ClinicalTrials.gov Identifier: NCT02535975), Lupus (ClinicalTrials.gov Identifier: 

NCT02741960). 

 

Other diseases 

 

Positive effects 

 

Epidemiological research indicates that metformin usage is associated with a lower risk of 

open-angle glaucoma in diabetic patients (Richards et al., 2015). A current ongoing clinical 

trial is testing metformin on age-related macular degeneration (ClinicalTrials.gov identifier: 

NCT02684578). Metformin reduces lens opacity in mice and may hence help to prevent 

cataracts (Martin-Montalvo et al., 2013).  

 

Metformin protected against allergic eosinophilic inflammation in mice (Park et al. 2012; 

Calixto et al., 2013). Metformin users had a lower risk of asthma-related hospitalization and 

asthma exacerbation compared to non-users (Li et al., 2016). Frequent metformin use was 

associated with a lower risk for psoriasis in a cohort study based on Taiwan's National 

Health Insurance claim database (Wu et al., 2015b). Using the same database, Chen et al. 

(2017a) found that metformin use was associated with a lower risk of asthma. 

 

Metformin has anti-fibrotic properties in a mouse model of lung fibrosis (Choi et al., 2016; 

Sato et al., 2016), renal fibrosis (Cavaglieri et al., 2015; Shen et al., 2016), and inhibits liver 

fibrosis in a mouse model of type 2 diabetes (Qiang et al., 2010). A trial is underway to 

evaluate the effect of metformin on liver fibrosis in hepatitis C and hepatitis C + HIV infected 

patients (ClinicalTrials.gov identifier: NCT02306070). Metformin attenuated connective 

tissue deposition in the heart of MSG-induced obese rats (Burlá et al., 2013). Metformin 

inhibits pressure overload-induced cardiac fibrosis by downregulating the TGF-β pathways 

(Xiao et al., 2010). Indeed, Sasaki et al. (2009) found that TGF-β mRNA levels were 

decreased by metformin in the heart of dogs. Furthermore, metformin inhibits the Ang II-

induced differentiation of cardiac fibroblasts into myofibroblasts, a critical event in the 

progression of cardiac fibrosis (Bai et al., 2013). Indeed, metformin treatment successfully 

inhibited Ang II-induced TGF-β production and cardiac fibrosis in mice (Chen et al., 2017b). 

 



 
 
Sven’s Science Column                                                                                          April 2017 
 
LongeCity.org   

17 
 

The case study discussed in the autoimmune disease section (see above) also suffered from 

non-alcoholic fatty liver disease, possibly as a side effect of the decades long use of the anti-

arthritis drug methotrexate, was also reversed after the dietary, dietary supplement and 

metformin intervention. Some studies indicate that metformin may improve non-alcoholic 

fatty liver disease (Garinis et al., 2010). Indeed, metformin also improves fatty liver in mice 

(Lin et al., 2000; Kim et al., 2010; Woo et al., 2014; Kim et al., 2016; Karise et al., 2017). Six 

months of metformin therapy resulted in 16% of enrolled patients who no longer had 

evidence of non-alcoholic fatty liver disease. Though, metformin was not superior to lifestyle 

therapy (Nar and Gedik, 2009). However a meta-analysis failed to find a benefit of metformin 

on histological response, but liver function tests (ALT and AST) showed an improvement (Li 

et al., 2013).  

 

Metformin exhibited antimicrobial activity in an in vitro assay (Dash et al., 2011). Metformin 

increased neutrophil chemotaxis, phagocytosis of bacteria, and bacterial killing (Park et al., 

2013). Metformin reduces the growth of tuberculosis bacteria including that of drug resistant 

strains (Singhal et al., 2014). Metformin may also reduce the risk of Clostridium difficile 

infection in diabetic patients (Eliakim-Raz et al., 2015). Metformin use was associated with a 

lower risk of hospital-treated infections in diabetic patients compared to other glucose-

lowering drugs (Mor et al., 2016). Based on an analysis of the Taiwan's National Health 

Insurance Research Database it was found that metformin use was associated with a lower 

risk of sepsis (Shih et al., 2015).  

 

Metformin protected against experimentally-induced intervertebral disc degeneration in a rat 

model (Chen et al., 2016). Metformin use was associated with less pain in patients suffering 

from lumbar radiculopathy pain, which can be a consequence of intervertebral disc 

degeneration (Taylor et al., 2013). 

 

Metformin also reduced serum deprivation-induced toxicity and cell death in stratial cells 

expressing mutant huntingtin (Jin et al., 2016; Vázquez-Manrique et al., 2016). Metformin 

enhanced touch response in worms expressing mutant huntingtin (Vázquez-Manrique et al., 

2016). Metformin significantly increased lifespan (+20.1%) in mice expressing a mutant form 

of human huntingtin, a model for Huntington’s disease (Ma et al., 2007). Chronic metformin 

therapy resulted in a modest improvement in behavioural and locomotory function in a mice 

model of Huntington. However, metformin therapy did not reduce striatal atrophy nor did it 

improve mitochondrial function (Adhihetty et al., 2010). In contrast, Jin et al. (2016) did find 

an improvement in mitochondrial function in metformin-treated cultured cells expressing 

mutant huntingtin.  

 

Metformin increases muscle strength in old OXYS rats (Kolosova et al., 2016) and protects 

muscle against cardiotoxin injury (Langone et al., 2014). In addition metformin has been 

found to improve the formation of postsynaptic sites with a “youthful architecture” on 

myotubes in cell culture. However, metformin had no effect on neuromuscular junctions in 

mice (Stockinger et al., 2017). Elderly metformin users had a better muscle strength, as 

measured by a handheld dynamometer, compared to nonusers (Sumantri et al., 2014).  

 

Metformin may also improve symptoms in women suffering from cyclic edema (Valensi et al., 

1995; Soudet et al., 2017). Metformin also decreased mortality in experimentally-induced 

acute seizures in mice without changing the severity of the seizures. Metformin did however 
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facilitate the termination of the acute seizures and also shortened the duration of chronic 

seizures in another mouse model (Yang et al., 2017).  

 

Negative effects 

 

Metformin had a negative effect on disease onset and progression in an amyotrophic lateral 

sclerosis (ALS) mouse model (Kaneb et al., 2011). Metformin treatment decreased exercise 

capacity in newly diagnosed patients with metabolic syndrome (Paul et al., 2017) or with 

insulin-resistance (Cadeddu et al., 2012). Similarly, Braun et al. (2008) observed a decrease 

in exercise capacity in healthy males and females with a normal body weight given 

metformin. Metformin also decreased exercise capacity after a single dose in mice (Rouquet 

et al., 2014). However, a single dose of metformin (1000 mg) did not affect exercise capacity 

in humans (Johnson et al., 2008).   

 

Mechanisms of metformin 
 

 
Figure 5 Some of the mechanisms through which metformin could promote longevity. The 

blunt-ended arrows indicate inhibition. 

 

Despite over half a century since its discovery, we still haven’t obtained a full picture about 

the mechanisms by which metformin exerts its beneficial effects. For example, recent 

studies continue to uncover new mechanisms through which metformin could possibly 

reduce blood sugar levels (Miller et al., 2013; Madiraju et al., 2014). Here we present some 



 
 
Sven’s Science Column                                                                                          April 2017 
 
LongeCity.org   

19 
 

of the known mechanisms but due to space limitations it is impossible to discuss the entire 

scientific literature on this subject. We solely focus on mechanisms that provide a possible 

mechanistic explanation for the life extending effects of metformin (Figure 5).   

Signalling cascades 

 

AMPK is an important energy sensor that acts as a master regulator of metabolism. AMPK is 

activated in low cellular energy conditions (Long and Zierath, 2006). Metformin activates 

AMPK in virtually all cell types ever tested (Bulterijs, 2011). The inhibition of complex I of the 

electron transport chain by metformin is a possible mechanism for this (Owen et al., 2000). 

However, Vytla and Ochs (2013) unexpectedly found that metformin stimulated ATP 

production. Given that genetic overexpression of the catalytic subunit of AMPK extends 

lifespan in worms (Apfeld et al., 2004; Mair et al., 2011) and fruit flies (Ulgherait et al., 2014) 

it’s plausible that AMPK activation contributes to the life extending effects of metformin.   

 

A second mechanism is the direct and indirect inhibition of the metabolic regulator mTOR by 

metformin (Bulterijs, 2011). Inhibition of mTOR by genetic or pharmacological (e.g. 

rapamycin) means is well known to extend lifespan in several model organisms including 

roundworms and rodents (Harrison et al., 2009; Lamming et al., 2013). mTOR is one of the 

biggest hubs in the cell to regulate growth and energy state. mTOR integrates signals from 

amino acid abundances, cellular energy state and growth factors (Saxton and Sabatini, 

2017). Multiple studies show that metformin decreases mTOR signaling (Kalender et al., 

2010; Kickstein et al., 2010; Ben Sahra et al., 2011; Nair et al., 2014; Howell et al., 2017). 

However, a recent study failed to observe a decrease in mTOR activity in the skeletal 

muscle of aged mice treated with metformin (Dungan et al., 2016). This result is in line with a 

previous study that found that a pharmacological activator of AMPK (which is an inhibitor of 

mTOR) failed to activate AMPK in the muscles of old mice, only having an effect in the 

muscles of young mice (Reznick et al., 2007). It might thus be possible that metformin fails 

to exert its geroprotective effects when administered to elderly animals. So far only one 

rodent study has tested the effect of metformin on lifespan when started at different ages. 

The results demonstrated that the effect of metformin on lifespan decreases with the age at 

which the treatment was started (Anisimov et al., 2011).   

 

The insulin/IGF-1 signalling (IIS) pathway has been linked to aging in worms, flies, and 

rodents. For example, knocking out a single copy of the IGF receptor (IGF-1R) in mice 

extends lifespan by 26% (Holzenberger et al., 2003). Metformin treatment has been shown 

to increase insulin-like growth factor binding protein-1 (IGFBP-1) levels (De Leo et al., 2000; 

Pawelczyk et al., 2004). In healthy males short-term (15 days) of metformin therapy resulted 

in a significant reduction in serum IGF-1 and insulin levels (Fruehwald-Schultes et al., 2002). 

Oral administration of metformin in mice decreased insulin and IGF-1 levels by about 20% 

and 35%, respectively (Memmott et al., 2010). In addition metformin has also been found to 

reduce the signalling through IGF-1R as well as the expression levels of IGF-1R in various 

cancer cell lines (Karnevi et al., 2013; Sarfstein et al., 2013; Zhang et al., 2015b).   

 

The histone deacetylase SIRT1 is a well-known “anti-aging” protein. However, recent 

evidence has questioned these effects (Burnett et al., 2011). We have previously discussed 

Sirt1 and refer the reader to that article for more background 

(http://www.longecity.org/forum/blog/201/entry-3579-nicotinamide-riboside/). Metformin 

increases SIRT1 protein levels in white adipose tissue (WAT) of obese db/db mice (Caton et 

http://www.longecity.org/forum/blog/201/entry-3579-nicotinamide-riboside/
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al., 2011), in liver cells of ob/ob mice (Song et al., 2015) and in human endothelial cells 

(Hung et al., 2016). Metformin increased SIRT1 protein levels in mouse microvascular 

endothelial cells maintained in high glucose but not in normal glucose (Arunachalam et al., 

2014). Metformin significantly increased SIRT1 deacetylase activity in human umbilical 

vascular endothelial cells (HUVECs) cultured for 3 days in high glucose followed by 3 days 

of normal glucose (Zhang et al., 2015c). Zheng et al. (2012) found a dose-dependent 

increase in SIRT1 activity in endothelial cells exposed to one week of high glucose followed 

by two weeks of normal glucose + metformin. Furthermore, when hyperglycemia was 

induced in rats for two weeks followed by four weeks of normoglycemia + metformin, SIRT1 

levels were significantly increased in the retinas compared to the control. Metformin also 

increased SIRT1 activity but not protein levels in skeletal muscle cells (Bogachus and 

Turcotte, 2010).     

 

SIRT1 activates the forkhead box O (FOXO) transcription factors by deacetylation (Daitoku 

et al., 2011). As discussed in the last paragraph, metformin activates SIRT1 leading to the 

hypothesis that metformin may also lead to the activation of FoxO transcription factors. 

Indeed, metformin treatment reduced acetylated FoxO1 levels in mouse microvascular 

endothelial cells maintained in high glucose but not in normal glucose (Arunachalam et al., 

2014). Metformin also upregulated and increased nuclear translocation of FOXO1 in 

adipocytes (Barbato et al., 2013). In contrast, metformin significantly decreased FOXO1 

levels and reduced its nuclear localization in human and mouse aortic endothelial cells 

grown in high glucose (Li et al., 2015a). Metformin activated FOXO3a in a breast cancer cell 

line (Fonseca et al., 2012; Queiroz et al., 2014). Metformin treatment extended lifespan of 

the daf-16 null mutant C. elegans (Onken and Driscoll, 2010). DAF-16 is the worm’s 

homolog of FOXO transcription factors leading to the conclusion that, at least in worms, 

metformin extends lifespan through DAF-16/FOXO independent pathways.  

 

Inflammation 

 

Metformin has also been reported to inhibit NF-κB, the master regulator of inflammation 

(Isoda et al., 2006; Huang et al., 2009; Tan et al., 2009; Kim et al., 2011; Martin-Montalvo et 

al., 2013). Metformin prevented the secretion of the proinflammatory cytokine TNF-α from 

macrophages (Hyun et al., 2013). Inhibition of NF-κB by metformin is able to prevent the 

senescence-associated secretory phenotype (SASP, see below) (Moiseeva et al., 2013). 

Furthermore, metformin therapy has been shown to reduce serum levels of C-reactive 

protein (CRP) in women suffering from PCOS (Morin-Papunen et al., 2003; Velija-Asimi, 

2007), in those at risk for developing diabetes (Goldberg et al., 2014) and in type 2 diabetes 

patients (Chakraborty et al., 2011; Esteghamati et al., 2013). Metformin (2 µM) prevented 

the lipopolysaccharide (LPS)-induced secretion of proinflammatory cytokines (IL-1 and TNF-

α) by macrophages. However, metformin in the absence of LPS had no effect on the 

secretion of proinflammatory cytokines (Bułdak et al., 2014). In another study metformin was 

found to reduce the pro-inflammatory cytokine IL-1β but not TNF-α while increasing the anti-

inflammatory cytokine IL-10 in macrophages stimulated by LPS (Kelly et al., 2015). 

Metformin was found to significantly decrease TNF production while having no effect on NF-

κB activation in isolated human monocytes stimulated with LPS or oxidized LDL (Arai et al., 

2010). Metformin significantly reduced the NF-κB subunit p65 and the phosphorylation of IκB 

in aortic vessel wall and decreased serum hs-CRP levels in an atherosclerotic rabbit model 

(Li et al., 2009). Phosphorylation of IκB leads to its proteasomal degradation and thereby 
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relieving its inhibitory effect on NF-κB. Hence the decrease in phosphorylation of IκB will 

result in lower nuclear localization of NF-κB. Treatment with metformin significantly reduced 

the mRNA levels of the proinflammatory cytokines IFN-γ, TNF-α, IL-17, IL-1β, and IL-6 in the 

brain of mice suffering from experimental autoimmune encephalomyelitis (Nath et al., 2009). 

However, 12 weeks of metformin treatment actually increased TNF-α levels in non-diabetic 

men with coronary heart disease (Carlsen et al., 1998). Given the central role of 

inflammation in aging (Chung et al., 2009), it seems reasonable to suggest that metformin 

may extend lifespan by decreasing inflammation.  

 

Cell senescence  

 

In the 1960s Hayflick and Moorhead observed 

that primary human cells could only undergo 

a finite number of cell divisions in culture 

before irreversibly ceasing to divide (Hayflick 

and Moorhead, 1961). Cells that remain alive 

but have irreversibly stopped dividing are 

called senescent cells. A variety of stressors 

can induce cell senescence such as oxidative 

stress and oncogene activation. In this way 

cell senescence can act as an anti-tumor 

mechanism by permanently arresting the 

division of cells with high levels of DNA 

damage. However, cell senescence is a 

double-edged sword as senescent cells can 

stimulate the growth of nearby tumor cells.  

 

Senescent cells accumulate with age (Dimri 

et al., 1995; Jeyapalan et al., 2007). This is 

either caused as a result of age-related 

decline in immune-mediated clearance of 

senescent cells or because senescent cells 

are generated in elderly individuals at a rate 

faster than their removal (Rodier and 

Campisi, 2011). Removing senescent cells in 

progeroid (Baker et al., 2011) or normal 

(Baker et al., 2016) mice through an artificial 

genetic construct has been found to increase 

lifespan and prevent several age-related 

phenotypes. senescence-associated 

secretory phenotype (SASP).  

                                                                            

 

As reported above, metformin is able to inhibit the senescence-associated secretory 

phenotype (Moiseeva et al., 2013). Oxidative-stress induced cell senescence (as determined 

by the senescence marker p16INK4a) was reduced in a dose-dependent manner by 

metformin treatment (Chen et al., 2016). Metformin reduced cell senescence (as measured 

by the sa-β-Gal assay) in mouse microvascular endothelial cells maintained in high glucose 

Figure 6 Normal mouse embryonic 

fibroblasts (MEFs, top) and senescent 

MEFs (bottom). The blue-green color in the 

senescent cells is caused by a senescent 

cell-specific staining technique (sa-β-Gal). 

Credit: Y tambe 

(https://commons.wikimedia.org/w/index). 
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but no effect was found in normal glucose (Arunachalam et al., 2014). Furthermore, 

metformin significantly reduced sa-β-Gal staining in HUVECs cultured for three days in high 

glucose followed by three days in normal glucose (Zhang et al., 2015c). Metformin also 

reduced sa-β-Gal staining in myoblasts exposed to ceramide (Jadhav et al., 2013). 

 

In contrast, multiple studies show that metformin is able to induce senescence in cancer cell 

lines (Yi et al., 2013; Li et al., 2015b). The induction of senescence by metformin in cancer 

cells could potentially explain the anti-cancer effects of metformin (see above). Indeed, 

metformin significantly increased the number of mouse embryonic fibroblasts that become 

senescent after exposure to the chemotherapy drug doxorubicin. Metformin also induced 

premature senescence in two human diploid fibroblast cell lines (Cufí et al., 2012). 

Doxorubicin interferes with topoisomerase-II-mediated DNA repair and increases the 

generation of free radicals that can damage cellular components including the DNA (Thorn 

et al., 2011). The study by Cufí et al. (2012) indicates that metformin may lower the 

threshold for stress-induced senescence. Hence cells that experience oncogenic-like stimuli 

may sooner go into senescence thereby reducing the risk for further oncogenic 

transformation.   

 

Mitohormisis  

 

We often think that the relationship between a stress (such as exposure to radiation) and a 

negative health outcome (such as cancer risk or mortality) is a linear dose-response curve. 

However, lots of research has shown that small levels of stress often exert protective effects 

and this phenomenon has been termed ‘hormesis’. The specific hormetic response to low 

levels of reactive oxygen species (ROS) produced by mitochondria has been termed 

‘mitohormesis’ (Ristow and Schmeisser, 2014). Metformin treatment lead to an increase in 

mitochondrial ROS production and this was essential for the life extending effect of 

metformin. Addition of antioxidants reduced the ROS levels and abolished metformin’s effect 

on lifespan. The authors further showed that the mitohormesis signaling happens through 

the ROS-induced activation of a protein known as peroxiredoxin 2 (PRDX-2) (De Haes et al., 

2014). This research was presented at the second Eurosymposium on Healthy Ageing 

(https://youtu.be/dy6c6qY6BRw).  
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Decrease in progerin levels  

 

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare 

inherited disorder that is often described as “premature aging”. 

Patients suffering from HGPS often die around their 13th 

birthday. HGPS is characterized by an error in the splicing of 

lamin A, which is involved in the “skeleton” of the cell nucleus, 

leading to the formation of a truncated protein known as 

progerin. Progerin accumulates in the nucleus of people 

suffering from HGPS leading to abnormalities in gene 

expression and a characteristic abnormal shape of the cell 

nucleus (known as “nuclear blebbing”, see figure 7). 

Interestingly, in recent years it was found that low levels of 

progerin accumulate in the nucleus during “normal” aging 

(Scaffidi and Misteli, 2006). Metformin treatment decreased the 

expression of progerin and improved the morphology of the cell 

nucleus in cells from progeria patients and in cells engineered 

to express progerin (Egesipe et al., 2016; Park and Shin, 2017).  

 

 

 

 

 

 

 

Metabolic effects 

 

The classical hypothesis for the mechanism by which metformin activates AMPK is the 

inhibition of mitochondrial respiration at complex I leading to a decrease in cellular ATP 

levels and a concomitant increase in AMP. AMP is an allosteric activator of AMPK (Bulterijs, 

2011). If this hypothesis were correct, metformin would cause a decrease in cellular ATP 

levels which would result in large shifts in metabolic fluxes. However, most studies have 

been conducted in isolated mitochondria or in permeabilized cells. An alternative mechanism 

for the metformin-induced increase in AMP levels without decreasing ATP concentration has 

been proposed (Ouyang et al., 2011). 

 

Cells build an energy reserve in the form of phosphocreatine by transferring a phosphate 

group from ATP to creatine. When energy is needed phosphocreatine can donate the 

phosphate group back to ADP generating ATP (Persky and Brazeau, 2001). Metformin (10-

20 mM) improved phosphocreatine recovery after ATP depletion (by either dinitrophenol or 

azide) in cultured muscle cells (Vytla and Ochs, 2013). This result suggest that metformin 

actually stimulates energy production rather than decreasing it. Though it should be pointed 

out that at higher metformin concentrations (40-80 mM) phosphocreatine recovery was 

decreased.  

 

Metformin has a whole host of metabolic effects. Some of them are clearly involved in its 

antidiabetic action such as the inhibition of gluconeogenesis in the liver (Hundal et al., 2000). 

Metformin also reduces plasma free fatty acid concentrations in diabetic individuals (Perriello 

Figure 7 The cell nucleus 

of a healthy individual 

(top) and from a progeria 

patient (bottom). Credit: 

Scaffidi et al. (2005). 
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et al., 1994) and this may help to reduce lipotoxicity. Metformin stimulates fatty acid 

oxidation in muscle and liver (Zhou et al., 2001; Collier et al., 2006; Wang et al., 2014). 

Interestingly, overexpression of fatty acid oxidation genes extends lifespan in fruit flies (Lee 

et al., 2012). Metformin also reduces cholesterol and lipid biosynthesis (Scott and Tomkin, 

1983; Zhou et al., 2001). The latter also suggests that inhibition of the electron transport 

chain is an unlikely explanation for the mechanism of metformin, as fatty acid oxidation 

requires electron transport chain activity.    

 

In 2013 David Gems and colleagues showed that metformin extended the lifespan of C. 

elegans through influencing the metabolism of the bacteria on which the worms grew. 

Metformin changed microbial folate and methionine metabolism. When worms were grown 

on a bacteria-free medium or on dead bacteria metformin administration actually reduced 

lifespan. This suggests that in worms metformin has toxic effects on the host but these are 

overshadowed by the beneficial effects from changes in the microbiome metabolism 

(Cabreiro et al., 2013). Another study had already demonstrated that interfering with folate 

synthesis in bacteria extended lifespan in C. elegans (Virk et al., 2012). A more recent study 

further confirmed that folate had no direct effect on C. elegans lifespan strengthening the 

conclusion that the effect is solely related to changes in the bacteria (Virk et al., 2016) 

Metformin has been shown to induce changes in the gut microbiome composition and 

metabolism in mice (Lee and Ko, 2014) and humans (Forslund et al., 2015). Cabreiro et al. 

(2013) also speculated that the lack of lifespan extension seen in fruit flies by metformin 

might be caused by a metformin-resistant microbiome in flies.  

 

Decreases in dietary methionine intake have been shown to extend the lifespan in yeast 

(Lee et al., 2014; Ruckenstuhl et al., 2014), fruit flies (Troen et al., 2007; Lee et al., 2014), 

and rodents (Orentreich et al., 1993; Richie et al., 1994; Miller et al., 2005; Lopez-Torres and 

Barja, 2008). In addition methionine restriction extended replicative lifespan of human cells 

in culture (Kozieł et al., 2014). Methionine restriction lowers mitochondrial ROS production 

resulting in lower oxidative protein damage (Sanz et al., 2006; Caro et al., 2008; Caro et al., 

2009; Sanchez-Roman et al., 2011). 

 

Oxidative stress 

 

A radiolysis experiment suggests that metformin is a weak scavenger for the OH⠁radical. In 

the same study polymorphonuclear cells were extracted from the blood of healthy volunteers 

and the researchers tested if metformin could decrease the ROS production in these cells 

after stimulation. Metformin showed an 8% inhibition of ROS after PMA and a 28% decrease 

in ROS after fMLP-stimulation but neither reached significance (Bonnefont-Rousselot et al., 

2003). Khouri et al. (2004) confirmed the finding that metformin is a scavenger for OH⠁but 

not for superoxide radicals in vitro. Metformin was not found to have antioxidant effects in a 

cell free assay ferric reducing antioxidant power assay (Othman et al., 2016). 

 

H2O2 levels in whole head homogenate of crickets were decreased by metformin treatment 

(Hans et al., 2015). ROS levels were decreased in white blood cells isolated from type 2 

diabetes patients treated with metformin (Chakraborty et al., 2011). Superoxide production 

after stimulation in platelets extracted from type 2 diabetes patients treated with metformin 

was similar to that of healthy controls and lower than in glibenclamide or diet-treated patients 

(Gargiulo et al., 2002). Metformin reduced mitochondrial ROS production and 
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malondialdehyde levels in rats fed a high fat diet (Pintana et al., 2012). Metformin reduced 

ROS production and lipid peroxidation in rat pancreatic β-cells stimulated with free fatty 

acids (Piro et al., 2012). Metformin significantly reduced palmitic acid-induced ROS 

production in human aortic endothelial cells (Hou et al., 2010). Metformin also reduced ROS 

production in unstimulated or stimulated (by either angiotensin II, PMA or high glucose) 

bovine aortic endothelial cells (Ouslimani et al., 2005; Mahrouf et al., 2006). Treating skin 

cells from progeria patients with metformin resulted in a significant decrease in reactive 

oxygen species (ROS) production (Park and Shin, 2017). Metformin decreased ROS 

production in mouse microvascular endothelial cells maintained in high glucose but not in 

normal glucose (Arunachalam et al., 2014). Metformin prevented the lipopolysaccharide 

(LPS)-induced increase in ROS production and malondialdehyde levels (Bułdak et al., 2014; 

Kelly et al., 2015). However, other studies have found that metformin increases ROS 

production in adipocytes (Anedda et al., 2008) and preadipocytes (Jaganjac et al., 2017). 

 

When old mice were supplemented with metformin they had an increase in the expression 

levels of the antioxidant enzyme superoxide dismutase 2 (SOD2) (Park and Shin, 2017). 

Metformin increased catalase and SOD2 levels in LPS-stimulated and in unstimulated 

macrophages while SOD1 was only increased in unstimulated cells (Bułdak et al., 2014). 

Metformin increased SOD2 (+47%), catalase (+134%), glutathione reductase (+187%), and 

glutathione peroxidase (+146%) levels and increased catalase enzymatic activity (+59%) as 

well as glutathione peroxidase enzymatic activity (+106%) in fructose-fed mice. Furthermore, 

in mice fed the control diet (without fructose) catalase enzymatic activity was increased by 

151% in the metformin group (Karise et al., 2017). Metformin ameliorated the MPTP-induced 

decrease in SOD and catalase activity, glutathione levels and the increased level of lipid 

peroxidation in a mouse model of Parkinson’s disease (Patil et al., 2014). Metformin also 

attenuated the haloperidol-induced increase in malondialdehyde and the reduction in 

glutathione and catalase (Adedeji et al., 2014). Metformin also increases SOD2 and catalase 

levels in normal fibroblasts and in fibroblasts from fibromyalgia patients (Alcocer-Gómez et 

al., 2015). Metformin treatment increased glutathione levels in blood and liver but not in 

heart of diabetic and normal mice (Ewis et al., 1995). Metformin decreased ROS levels and 

increased protein levels of SOD2 and catalase in endothelial cells cultured for one week in 

high glucose followed by 2 weeks in normal glucose + metformin (Zheng et al., 2012). Hung 

et al. (2016) found lower ROS levels and an increased activity of SOD in human endothelial 

cells pre-treated with metformin before oxidized LDL exposure. Similarly, Martin-Montalvo et 

al. (2013) also found higher levels of SOD2 in metformin treated mice. Furthermore, they 

also found that metformin lowers the mitochondrial production of superoxide and reduces the 

levels of 8-iso-PGF2α indicating a decrease in lipid peroxidation. Metformin activates Nrf2 in 

a liver cell line (Martin-Montalvo et al., 2013), in mice brain (Prasad et al., 2017), as well as 

the Nrf2-homolog SKN-1 in worms (Onken and Driscoll, 2010). Metformin increased 

glutathione levels, improved antioxidant potential, and lowered malondialdehyde, protein 

carbonyl, and ROS levels in brain tissue of rats (Geetika et al., 2017). Metformin also 

decreased malondialdehyde in fructose treated mice (Karise et al., 2017).  

 

Metformin treatment prevented the hydrogen-peroxide-induced apoptosis in skin cells from 

fibromyalgia patients (Alcocer-Gómez et al., 2015). Metformin also ameliorated the 

pentylenetetrazole-induced decrease in glutathione levels and the increase in 

malondialdehyde levels (Zhao et al., 2014). Twelve weeks of metformin treatment in newly 

diagnosed type 2 diabetes patients significantly increased the ferritin reducing ability of 
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plasma, a measure of the antioxidative capacity of blood plasma. Furthermore, the advanced 

oxidation protein product levels decreased and the levels of the antioxidant enzyme 

paraoxonase were increased by metformin treatment (Esteghamati et al., 2013; 

Mirmiranpour et al., 2013). Chakraborty et al. (2011) also observed a decrease in advanced 

oxidation protein product levels after 24 weeks of metformin therapy.  

 

Glycation inhibitor 

 

Glycation is the non-enzymatic reaction between reducing sugars or reactive carbonyl 

compounds (such as glyoxal and methylglyoxal) with proteins (figure 8). Glycation has been 

recognized as one of the drivers of biological aging (Sjöberg and Bulterijs, 2009). Metformin 

has a strong structural similarity to the well known inhibitor of glycation aminoguanidine 

(Bulterijs, 2011). Aminoguanidine is the gold standard glycation inhibitor that is used as a 

positive control in research on glycation (Richardson et al., 2015). There are several 

possible mechanistic explanations for how metformin could protect against glycation. Firstly, 

metformin is used to lower blood glucose levels in diabetic patients and hence the rate of 

glycation would be decreased. However, metformin does not lower blood glucose levels in 

people with normal blood glucose levels (normoglycemic). Secondly, metformin may 

decrease oxidative stress resulting in a lower production of reactive carbonyl compounds 

(see above). Finally, metformin may act as a scavenger reacting with reactive intermediates 

of glycation and thereby decreasing their concentration (Harding and Ganea, 2006). 

 

 
Figure 8 Formation pathways of advanced glycation end products (AGEs). 

 

When metformin is incubated with methylglyoxal at 37 °C for three hours the free 

methylglyoxal concentration decreases by 92.1% (Huang et al., 2016). But does metformin 

also scavenge methylglyoxal in the presence of proteins? This question has been answered 

by multiple studies. For example, Ruggiero-Lopez et al. (1999) incubated bovine serum 

albumin (BSA) with either glyoxal or methylglyoxal for 6 days at 37 °C to induce glycation. 

The inhibitory effect of metformin was investigated and compared to aminoguanidine. The 

addition of metformin reduced glyoxal-induced glycation (as measured by fluorescence) by 

37% and methylglyoxal-induced glycation by 45%. In contrast, aminoguanidine decreased 

glyoxal-induced glycation by 85% and methylglyoxal-induced glycation by 58%. The efficacy 
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of metformin in reducing methylglyoxal-induced (Kiho et al., 2005; Ahmad et al., 2013) and 

glucose-induced (Tanaka et al., 1997; Rahbar et al., 2000) protein glycation has been 

confirmed by other studies.  

 

Metformin administration to type 2 diabetes patients (Beisswenger et al., 1999) or women 

suffering from PCOS (Diamanti-Kandarakis et al., 2007) has been found to lower serum 

levels of methylglyoxal. The addition product produced by the scavenging reaction between 

methylglyoxal and metformin was demonstrated to be present in the urine of type 2 diabetic 

patients treated with metformin (Kinsky et al., 2016). Twelve weeks of metformin treatment in 

type 2 diabetes patients lead to a significant decrease in serum AGEs in patients newly 

diagnosed (Esteghamati et al., 2013). Twenty-four weeks of metformin therapy decreased 

plasma pentosidine levels in type 2 diabetes patients (Chakraborty et al., 2011). 

Furthermore, 6-month metformin treatment in women with PCOS led to lower serum 

advanced glycation end product (AGE) levels (Christakou et al., 2014). 

 

Human neuronal stem cells exposed to AGEs had a reduced cell viability and increased 

levels of proinflammatory cytokines. Metformin treatment protected against AGE-induced 

cellular toxicity (Chung et al., 2015, 2017). Schurman et al. (2008) treated cells with AGE-

modified protein and observed oxidative stress and cell death. However, these alterations 

could be prevented by metformin treatment. The authors showed that AGE-modified protein 

lead to an upregulation of the receptor for advanced glycation end products (RAGE) on the 

cell surface while this upregulation was prevented by metformin. RAGE has a positive 

feedback cycle so that upon binding of AGE-protein to a RAGE receptor the cell expresses 

more RAGE protein leading to an even stronger AGE-RAGE signal. Metformin apparently 

reduces this positive feedback cycle and hence reduces AGE-modified protein toxicity 

(Schurman et al., 2008; Ishibashi et al., 2012a&b; Zhou et al., 2016b). Metformin also 

reduced AGE-induced increases in the expression of pro-inflammatory cytokines (IL-1β, IL-6, 

and TNF-α) while increasing the expression of the anti-inflammatory cytokine IL-10. 

Furthermore, metformin reduced NF-κB nuclear translocation and shifted the polarization of 

macrophages to the anti-inflammatory M1 phenotype (Zhou et al., 2016b). 

 

DNA damage 

 

In the genetic disease Fanconi anemia, patients experience high levels of chromosome 

breaks. Exposing fibroblasts from a Fanconi anemia patient to metformin for 48 h 

significantly reduced the level of these chromosome breaks. Furthermore, it was 

demonstrated that aminoguanidine (see above) equally reduced chromosome damage 

(Zhang et al., 2016). Metformin reduced the number of DNA adducts and the amount of 

oxidative DNA damage in cigarette smoke-exposed mice (Izzotti et al., 2014). Metformin-

treated mice have also been shown to harbor lower levels of the DNA strand break marker γ-

H2AX foci (Arkadieva et al., 2011). Skin cells from progeria patients treated with metformin 

also show a significant decrease in γ-H2AX foci (Park and Shin, 2017). Similarly in fruit flies 

γH2avD (the fly equivalent of γ-H2AX foci) were reduced by 36% in intestinal stem cells of 

metformin treated flies (Na et al., 2013). Metformin was shown to reduce paraquat-induced 

increases in ROS and DNA mutations. Furthermore, metformin also decreased oncogenic 

Ras-induced increases in ROS and DNA damage (Algire et al., 2012). Metformin treatment 

ameliorated insulin-induced increases in DNA damage in cell culture and in rats (Othman et 

al., 2016). 
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However, metformin was found to induce DNA damage in Chinese hamster ovary (CHO-K1) 

cells as detected by the comet assay. In contrast, the authors failed to find chromosome 

aberrations in the CHO-K1 cells and micronucleus assays in mice also failed to find DNA 

damage (Amador et al., 2012). Metformin was also found to enhance the formation of 

oxidative DNA damage in DNA exposed to H2O2 and Cu2+ in vitro. However, no increase in 

oxidative DNA damage was found in the absence of H2O2 and Cu2+ (Ohnishi et al., 2016). As 

discussed above metformin lowers ROS levels in the cell and this might compensate for the 

metformin-induced enhancement of ROS damage.  

 

Metformin may induce DNA damage in cancer cell lines possibly by increasing ROS 

production (Marinello et al., 2015). Furthermore, metformin has been found to radiosensitize 

cancer cells through inhibition of DNA repair proteins (Jeong et al., 2015; Wang et al., 

2015b). However, this might be beneficial as it could contribute to metformin’s anti-cancer 

effects (see above). As discussed above, metformin seems to lower ROS production in 

normal cells.  

 

Cell death 

 

Metformin reduced mitochondrial permeability transition pore opening in β-cells (Lablanche 

et al., 2011) and in the ischemic heart (Bhamra et al., 2008). The opening of the 

mitochondrial permeability transition pore is one of the key events in mitochondrial-induced 

apoptosis. Metformin reduced the induction of endothelial cell death by exposure to oxidized 

LDL (Valente et al., 2014). Metformin protected against H2O2-induced cardiomyocyte 

apoptosis (Sasaki et al., 2009). Metformin reduced AGE-induced apoptotic cell death in 

kidney cells (Ishibashi et al., 2012b). Metformin also reduced serum deprivation-induced cell 

death in stratial cells expressing mutant huntingtin (Vázquez-Manrique et al., 2016). 

Metformin administration increased the urinary excretion of cell-free DNA and mtDNA in 

young but even more in old rats (Gaziev et al., 2016). Cell-free DNA and mtDNA in the urine 

is a marker of cell death in vivo. The authors interpret this finding as that metformin may 

potentially increase the cell death of cells containing structural or functional abnormalities, 

which may be beneficial. The effect of metformin of β-cell death will be discussed below.  

 

Autophagy 

 

Metformin induced autophagy in the brain of rats leading to protection from experimentally 

induced stroke. Treatment with an autophagy inhibitor completely abolished the metformin-

induced neuroprotection (Jiang et al., 2014a). Metformin protected nucleus pulposus cells 

from exogenous oxidant-induced apoptosis and cell senescence by activating autophagy 

(Chen et al., 2016). Metformin also increased autophagy induction and flux in liver cells from 

ob/ob mice (Song et al., 2015). Metformin has been found to increase autophagy in cancer 

cells (Tomic et al., 2011; Feng et al., 2014; Takahashi et al., 2014; Sessen et al., 2015; 

Nazim et al., 2016). Few direct data exist in non-cancerous cells on the link between 

metformin and autophagy but based on our mechanistic understanding metformin should 

activate autophagy. Metformin is an inhibitor of mTOR (see above) and mTOR suppresses 

autophagy hence we expect that metformin would stimulate autophagy. Metformin 

stimulated the acidification of the lysosomal/endosomal compartments (Labuzek et al., 

2010).  
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Weight loss 

 

Body weight was also lower in metformin-treated adult C57BL/6 mice but metformin 

attenuated the age-related weight loss. Body weight in old mice treated with metformin 

surpassed that of control mice (Martin-Montalvo et al., 2013). Age-related weight loss is a 

predictor of mortality (Wedick et al., 2002; Knudtson et al., 2005; Alley et al., 2010). However 

in other studies the body mass of old metformin-treated mice was lower than that of control 

mice (Anisimov et al., 2008; Anisimov et al., 2010b). Yet other studies found no difference in 

body weight over the whole lifespan (Anisimov et al., 2010a). It is also possible that the 

effect of metformin on body mass may be sex dependent. Indeed, in one study it was found 

that metformin-supplemented male mice were lighter while female mice were heavier 

compared to controls (Anisimov et al., 2015). 

 

Short-term (15 days) of metformin therapy had no effect on body weight or body fat in 

healthy males with a normal body weight (Fruehwald-Schultes et al., 2002). Twenty-four 

weeks of metformin treatment reduced BMI levels from 27 to 23 kg/m² in a double-blind, 

placebo-controlled, randomized trial of type 2 diabetes patients in India (Chakraborty et al., 

2011). Six weeks of metformin treatment lead to a significant decrease in body weight and 

BMI in patients with type 2 diabetes (Sahin et al., 2007). Metformin reduced weight gain by 3 

kilo after a 4.3 year follow-up in diabetes patients (Kooy et al., 2009). A Cochrane review 

found that metformin decreased body weight and BMI in obese children and adolescents 

(Mead et al., 2016). A meta-analysis of randomized placebo-controlled trials found that 

lifestyle + metformin lead to a greater decrease in BMI (by 0.7 kg/m²) than lifestyle + placebo 

(Naderpoor et al., 2015). Another meta-review indicated that metformin is effective in 

reducing antipsychotics-induced weight gain (Zheng et al., 2015). Finally, in a meta-analysis 

that included all randomized placebo-controlled trials for which data on weight change were 

available found that metformin was associated with a decrease in body weight of 1.1 kg 

(Domecq et al., 2015). In conclusion we can say that there’s convincing evidence that 

metformin use in humans leads to a decrease in body weight and BMI but we should bear in 

mind that this decrease is very small compared to what is normally obtained by diet and 

lifestyle interventions. For example, one short term (8 weeks) diet study found an 

approximate weight loss of 7 kg (Lopez-Legarrea et al., 2013). The exception to this is the 

Indian trial in which 24 weeks of metformin-treatment produced an impressive decline in BMI 

of 4 units. In the placebo group BMI was decreased by just 0.5 units (Chakraborty et al., 

2011).  

 

Safety of metformin treatment 
 

Minor side effects 

 

Metformin has several non-serious side effects such as gastrointestinal problems (diarrhea, 

flatulence, vomiting, upset stomach, abdominal bloating, anorexia, and nausea), taste 

disturbances including a metallic taste in the mouth, and dermatological problems 

(erythema, pruritus, and urticaria) (Product monograph: GlucophageⓇ, 2009).  
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Lactic acidosis 

 

The most serious concern with biguanide therapy is the development of lactic acidosis. 

Lactic acidosis has a mortality rate of about 30-50% (DeFronzo et al., 2016). The two other 

biguanides (phenformin and buformin) have been withdrawn because of the risk for lactic 

acidosis. Certain conditions increase the risk for lactic acidosis and hence metformin is 

contraindicated for people suffering from these conditions. Contraindications for metformin 

use include renal or hepatic insufficiency, circulatory dysfunction such as congestive heart 

failure, during stress situations (such as severe infections, trauma or surgery), severe 

dehydration, during radiological investigations with iodinated contrast materials, unstable or 

insulin-dependent diabetes, people who suffer from a metabolic acidosis, people who have 

an excessive intake of alcohol, people with a history of lactic acidosis, and in very elderly 

people (Product monograph: GlucophageⓇ, 2009; DeFronzo et al., 2016). It should also not 

be used in people suffering from a known hypersensitivity or allergy to metformin nor during 

pregnancy or breastfeeding (Product monograph: GlucophageⓇ, 2009).  

 

Wang et al. (2003) found an approximate 5-fold increase in blood lactate levels in mice 

injected with metformin compared to saline. The concentration of the drug needed to achieve 

half of the maximal effect is called the EC50 value. The lower the EC50 the higher the potency 

of the drug. Wang et al. (2003) also compared the EC50 values for all three biguanides for 

their ability to increase blood lactate levels. The EC50 for metformin was 734 µM compared 

to 119 µM for buformin and only 4.97 µM for phenformin. These data illustrate that metformin 

is much less potent than buformin and phenformin in increasing blood lactate levels. Human 

studies typically show a small increase in blood lactate concentrations (DeFronzo et al., 

2016).  

 

Salpeter et al. (2010) conducted a large meta-review of 347 studies and found no increased 

risk for lactic acidosis in metformin-treated patients compared to those on other diabetes 

medications. Furthermore blood lactate levels were not significantly different between both 

groups. The incidence of lactic acidosis is estimated at 5-9 cases per 100,000 patient years 

of metformin use (DeFronzo et al., 2016). The lack of lactic acidosis cases in published trials 

probably reflects the fact that trials typically exclude patients at risk for lactic acidosis and 

that trial participants receive standard of care (DeFronzo et al., 2016). Lactic acidosis is a 

risk especially in patients with contraindications for the use of metformin or in people who 

take an overdose (Yamada et al., 2016).  

 

Hypoglycemia  

 

Hypoglycemia (overly low blood sugar level) is a common adverse effect of many 

medications used in type 2 diabetes. After all the goal of these medications is to lower blood 

sugar levels. However, when metformin is used as monotherapy (in the absence of other 

blood sugar lowering drugs) this risk of hypoglycemia is negligible (Cheng and Fantus, 

2005).   
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Decrease in vitamin B12 levels 

 

Berchtold et al. (1969) reported that short-term (2-3 months) metformin treatment caused 

malabsorption of vitamin B12. In a recent randomized placebo controlled trial it was found 

that treatment of type 2 diabetes patients with 850 mg three times a day for 4.3 years 

resulted in a 19% decrease of serum B12 levels (de Jager et al., 2010). Prevalence of B12 

deficiency in metformin-treated patients has been reported to range from 5.8% to as high as 

28% (Pflipsen et al., 2009; Reinstatler et al., 2012; Ko et al., 2014; Ahmed et al., 2016; 

Damião et al., 2016; Kancherla et al., 2017). Reinstatler et al. (2012) found that 5.8% of 

metformin-treated diabetes patients had B12 deficiency compared to only 2.4% in those not 

using metformin. In a meta-analysis of 29 studies with a total of over 8,000 patients it was 

demonstrated that metformin use was associated with lower serum vitamin B12 levels and a 

higher incidence of B12 deficiency (Niafar et al., 2015).   

 

One surprising study revealed that an increased intake of calcium reversed the 

malabsorption of vitamin B12 by metformin (Bauman et al., 2000). However this finding is 

explained by the presence of calcium ions in the receptor that is needed for vitamin B12 

absorption in the small intestine (Birn et al., 1997).  

 

Vitamin B12 deficiency can cause peripheral neuropathy, impaired memory, delirium, 

megaloblastic anemias, pancytopenia, and hyperhomocysteinemia (Kibirige and Mwebaze, 

2013). Multiple case reports have been published that link metformin use to one of the B12 

deficiency diseases (Mahajan and Gupta, 2010). While the decrease in vitamin B12 levels 

can occur quickly after initiation of metformin therapy, it can take up to 5-10 years before 

overt clinical manifestations of vitamin B12 deficiency become evident due to the large body 

stores of this vitamin, primarily in the liver, that are not quickly depleted (Kibirige and 

Mwebaze, 2013). 

 

Sadly many long-term users are never tested for vitamin B12 status. In fact current clinical 

guidelines do not make any recommendations on vitamin B12 testing or prevention in 

metformin users (Fogelman et al., 2016). In a recent study it was found that only 37% of 

long-term metformin users had their vitamin B12 status tested (Kancherla et al., 2017). 

 

Decrease in folate levels  

 

In the metabolism section we discussed how metformin extended lifespan of C. elegans by 

interfering with folate metabolism. However, we consider a decrease in folate levels in the 

host to be a negative side effect of metformin treatment as Virk et al. (2016) demonstrated 

that host folate had no effect on lifespan.  

 

A deficiency in folate can lead to anemia, neurological disorders, birth defects, occlusive 

vascular disease, and colonic polyposis (Haslam and Probert, 1998). 

 

Short term (6 weeks) of metformin treatment resulted in a 10% decrease of serum folate 

levels (Sahin et al., 2007). Serum folate levels were decreased by 7% after 16 weeks of 

metformin treatment in a placebo-controlled, randomized trial (Wulffelé et al., 2003). 

Similarly, 40 weeks of metformin treatment lead to a 8% decrease in non-diabetic male 

patients with cardiovascular disease (Carlsen et al., 1997). However, some studies failed to 
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find a decrease in serum folate levels in diabetic patients treated with metformin (Carpentier 

et al., 1976; Pongchaidecha et al., 2004; de Jager et al., 2010).  

 

Decrease in testosterone levels  

 

It is well known that testosterone levels decline with age in males (Yeap, 2009). Several 

prospective studies have demonstrated an association between low testosterone levels and 

increased mortality in middle-aged and older men (Shores et al., 2006; Laughlin et al., 2008; 

Tivesten et al., 2009). However such studies cannot demonstrate if this association is 

causal. It could for example be that men who are sicker tend to have lower testosterone 

levels. Indeed, testosterone has been found to be decreased by acute and chronic illnesses 

(Shores, 2014). To the best of my knowledge no intervention study has tested the effect of 

metformin supplementation on lifespan. Though, one interesting result comes from the 

Interventions Testing Program. 17-α-estradiol extended lifespan of male but not female mice 

(Strong et al., 2016). 17-α-estradiol inhibits the activity of the enzyme 5α-reductase which 

converts testosterone in its more active form dihydrotestosterone.  

 

Treatment with 1500 mg/d metformin decreased serum testosterone levels by 23% in 

women with breast cancer (Campagnoli et al., 2012, 2013). In women suffering from PCOS 

metformin treatment (500 mg three times per day) for 30-32 days led to an approximate 19% 

reduction in plasma free testosterone levels (De Leo et al., 2000). Similarly, three months 

and six months of metformin therapy significantly reduced testosterone levels in 

normoinsulinemic women with PCOS syndrome (Romualdi et al., 2008). A meta-review of 

randomized placebo-controlled trials with metformin for the treatment of PCOS found a 

decrease in testosterone levels (Naderpoor et al., 2015). Pawelczyk et al. (2004) found a 

37% decrease in testosterone levels and a 16% increase in sex hormone-binding globulin 

(SHBG) in obese PCOS patients treated with 500 mg metformin three times a day. SHBG 

binds to testosterone and thereby decreases the level of “free” testosterone. Only free 

testosterone can penetrate cells to activate the signalling pathways. Thus higher SHBG 

levels result in less testosterone signalling. Tan et al. (2009) found an approximate 28% 

decrease in testosterone levels after 6 months of metformin treatment compared to before 

metformin treatment in women suffering from PCOS.  

 

There’s a surprising lack of studies that investigate the effect of metformin on testosterone 

levels in males. Two weeks of metformin treatment in normal men lead to a significant 

reduction in total testosterone and free testosterone with a concurrent increase in sex 

hormone binding globulin levels (Shegem et al., 2002). In addition three months of metformin 

treatment plus a hypocaloric diet lead to a significant decrease in total testosterone levels in 

diabetic men as well as in free testosterone levels in the non-diabetic men (Ozata et al., 

2001).  

 

The decrease in testosterone levels by metformin is yet another interesting parallel between 

metformin and calorie restriction (Cangemi et al., 2010). 
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Cognitive decline 

 

The hallmarks of Alzheimer’s disease (AD) are 

the accumulation of amyloid-β in plaques and 

the formation of neurofibrillary tangles made of 

aggregated hyperphosphorylated tau protein 

(Bloom, 2014). In addition some have described 

AD as type 3 diabetes because insulin 

resistance in the brain is a common 

pathophysiologic finding in the brain of AD 

patients (de la Monte and Wands, 2008; 

Kandimalla et al., 2016). This lead to the 

hypothesis that metformin could potentially be a 

treatment for AD.   

 

Chen et al. (2009) have shown that metformin 

(2 mM) stimulates the accumulation of 

amyloid-β in neurons in vitro. An observation confirmed by a more recent study by Son et al. 

(2016). However insulin prevented the production of amyloid-β. Metformin could even 

enhance the ability of insulin to decrease amyloid-β production (Chen et al., 2009). In 

another paper the authors exposed primary neurons to metformin (2.5 mM) in the presence 

of insulin and observed a decrease in the levels of the enzyme BACE1 which is involved in 

the production of amyloid-β (Hettich et al., 2014). Metformin increased amyloid-β protein 

levels in C. elegans but decreased the oligomerization (Ahmad and Ebert, 2016). Picone et 

al. (2015) reported that metformin increased amyloid precursor protein (APP) expression as 

well as induced the formation of amyloid-β aggregates in cell culture. However, the lowest 

concentration of metformin used in this experiment was 12.5 mM. To put this in contrast, the 

highest concentration in the brain of mouse fed 50 mg/kg metformin was only 17µM (Wilcock 

and Bailey, 1994). Picone et al. (2015) confirmed that insulin treatment reduced metformin-

induced amyloid-β production. Hence, even though several cell culture studies suggest that 

metformin increases amyloid-β levels these studies have as limitation that they all use 

supraphysiological metformin concentrations and that the increase in amyloid-β is 

attenuated by the presence of insulin. In vivo insulin is obviously present and hence the in 

vivo state may more reflect the experiments conducted in the presence of insulin. Picone et 

al. (2015) also reported that metformin treatment increased ROS production and decreased 

antioxidant gene expression in a neuronal cell line. A final contradiction of this paper with the 

literature is the observed activation of NF-κB by metformin (see above). This is equally in 

contradiction with the general observed trend for lower ROS levels and higher expression of 

antioxidant genes in metformin treated cells (see above). As already reported above, the lab 

of Linda Partridge demonstrated that metformin rescued the shortened lifespan of amyloid-β 

overexpressing fruit flies by increasing the uptake of glucose in the neurons (Niccoli et al., 

2016). Metformin delayed the amyloid-β-induced paralysis, improved neurotransmitter 

function, reduced amyloid-β oligomerization in C. elegans (Ahmad and Ebert, 2016). 

Metformin also ameliorated amyloid-β-induced mitochondrial dysfunction in human neural 

stem cells (Chiang et al., 2016).   

 

Tau needs to be hyperphosphorylated before it can aggregate. Phosphatase enzymes can 

remove phosphate groups from tau and hence protect against the formation of neurofibrillary 

Figure 9 A diffuse plaque in the brain of an 

aged human. Credit: (Mathur et al., 2015).  
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tangles. The phosphatase PP2A is activated by metformin, and metformin treatment reduced 

phosphorylation of tau in mouse neurons. Furthermore the authors administered metformin 

(5 mg/ml) in the drinking water of mice for 16-24 days and found a decrease in 

phosphorylation of tau in the brain (Kickstein et al., 2010). Metformin injections also 

decreased total tau and phosphorylated tau levels in the brain of diabetic mice (Li et al., 

2012). Barini et al. (2016) confirmed that metformin reduces the phosphorylation of tau but 

paradoxically find that tau aggregation was increased. When metformin was given to a 

human tau transgenic mouse the number of tau inclusions in the brain was increased. 

Recently it was found that metformin treatment also decreases phosphorylation of α-

synuclein, a protein found in inclusions in the brain of Parkinson’s disease patients (Pérez-

Revuelta et al., 2014).  

 

As we already discussed above, metformin increases homocysteine levels and high 

homocysteine levels have been linked to a higher risk for dementia (Seshadri et al., 2002; 

Wald et al., 2011). However, lowering plasma homocysteine levels did not reduce cognitive 

decline in elderly patients with Alzheimer’s disease or dementia (Clarke et al., 2014; Zhang 

et al., 2017).   

 

Metformin injections (200 mg/kg/d) failed to improve spatial learning and memory in diabetic 

mice (Li et al., 2012). While metformin did improve cell proliferation and neuroblast 

differentiation in the dentate gyrus, a part of the brain believed to be important in the 

formation of new memories, in a rat model of diabetes (Hwang et al., 2010). Furthermore, 

metformin was found to promote neurogenesis and improve spatial memory in normal (non-

diabetic) mice (Wang et al., 2012). 

 

The risk for dementia was decreased in diabetic people treated with either metformin or 

sulfonylureas (Hsu et al., 2011). In the Singapore Longitudinal Aging Study the long-term (>6 

years) use of metformin was associated with a reduced risk for cognitive decline (Ng et al., 

2014). Moore et al. (2013) found that patients with type 2 diabetes that used metformin had 

worse cognitive performance than those managing their diabetes with other treatments. In 

an abstract presented at the AD/PD 2017 conference in Vienna researchers using data from 

the Taiwan’s National Health Insurance research database with a 12-year follow up showed 

that metformin use in diabetic patients was linked to a higher risk for Parkinson’s disease, 

Alzheimer’s disease, vascular dementia, as well as all-cause dementia. In addition the risk 

for dementia and Parkinson’s disease showed a dose- and duration-dependent effect (Kuan 

and Huang, 2017). However, metformin treatment was neuroprotective in a mice model of 

Parkinson’s disease (Patil et al., 2014). The human studies have all been conducted in 

diabetic people. So it remains possible that metformin negatively affects the risk for 

Alzheimer’s disease by increasing amyloid-β levels but that in diabetes patients this is 

overshadowed by a larger reduction in the risk for Alzheimer’s disease from the 

improvement in insulin sensitivity.  

 

Alzheimer’s disease has sometimes been called diabetes type 3 because of the finding that 

neurons in Alzheimer’s disease show insulin resistance and that experimental induction of 

insulin resistance mimics multiple features of Alzheimer’s disease (de la Monte and Wands, 

2008; Kandimalla et al., 2016). Metformin improved insulin sensitivity in a cell culture model 

of neuronal insulin resistance. Furthermore, this resulted in decreased tau 

hyperphosphorylation and reduced amyloid-β levels (Gupta et al., 2011).  
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One hypothetical explanation for the increased risk of Alzheimer’s disease in type 2 diabetics 

treated with metformin is that type 2 diabetes patients may also develop neuronal insulin 

resistance. As discussed above, metformin increases amyloid-β production in cultured 

neurons but this is abolished by the addition of insulin. Insulin resistant neurons no longer 

respond to insulin and hence metformin increases amyloid-β production. If this hypothesis 

proves right then metformin could potentially increase Alzheimer’s disease risk in insulin 

resistant patients while lower it in normal people. Sadly no data exist on the incidence of 

Alzheimer’s disease in non-diabetic metformin users.  

 

As already discussed above, Zhou et al. (2016a) demonstrated that metformin treatment in 

mice protects against chemotherapy-induced cognitive impairment. Metformin also 

ameliorated the haloperidol-induced memory deficit (Adedeji et al., 2014). Metformin 

improved learning behavior and memory in rats fed a high fat diet (Pintana et al., 2012). 

However, in a study by McNeilly et al. (2012) metformin was ineffective in preventing a high 

fat diet-induced cognitive deficit in rats.  

 

Beta-cell function and apoptosis 

 

Exposure of β-cells to metformin for 24 h leads to a decrease in insulin production and 

secretion in response to a high glucose stimulus. Metformin in concentrations as low as 40 

µM could induce β-cell apoptosis after long exposure. The number of apoptotic cells is time- 

and dose-dependent (Kefas et al., 2004). These results are confirmed by Wang et al. 

(2011b) who observed that half of the cells cultured for 72 hours in metformin were unviable. 

Metformin was found to decrease the proliferation and promote apoptosis in MIN6 cells 

(Jiang et al., 2014b). Hinke et al. (2007) found a concentration-dependent reduction in cell 

viability in metformin-exposed MIN6 cells. MIN6 are typically thought of as a pancreatic β-

cell line but analysis shows that MIN6 cells also have features of other pancreatic endocrine 

cells (Nakashima et al., 2009). The finding that metformin might induce β-cell death is 

strengthened by the finding that other AMPK activators (Kefas et al., 2003; Cai et al., 2007; 

Kim et al., 2007) or genetic AMPK overexpression (Riboulet-Chavey et al., 2008) also induce 

apoptosis in β-cells. However, Cai et al. (2007) and Kim et al. (2007) reported that AICAR-

induced activation of AMPK caused apoptosis in part through an increase in ROS. While as 

was discussed above metformin seems to decrease ROS production. 

 

In contrast, metformin protected against dysfunction and cell death in ER-stress induced 

apoptosis in a mouse β-cell line (Jung et al., 2012). Metformin inhibited the opening of the 

permeability transition pore, a key event in mitochondrial-induced apoptosis, in 

permeabilized and intact rat pancreatic β-cell line (INS-1). Furthermore, metformin increased 

viability in INS-1 cells exposed to high glucose or fructose concentrations (Lablanche et al., 

2011). Metformin suppressed palmitic acid-induced apoptosis in MIN6 cells (Jiang et al., 

2014b) and in rat insulinoma cells (Simon-Szabó et al., 2014). The protective effect of 

metformin against palmitic acid-induced apoptosis is strengthened by other studies that find 

that metformin restores insulin secretion in β-cells exposed to free fatty acids or high glucose 

(Patanè et al., 2000; Piro et al., 2012). Metformin also reduced ROS production in pancreatic 

β-cells stimulated by free fatty acids (Piro et al., 2012). Also as discussed before metformin 

had protective effects, such as decreased ROS production (Hou et al., 2010) and reduced 

lipid accumulation (Song et al., 2010), in other cell types exposed to palmitic acid.  
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Finally, Chang et al. (2016) found no effect from metformin on cell death in rat insulinoma 

cells. Metformin also failed to protect against methylglyoxal-induced cell death.   

 

Previous LongeCity article on metformin  
 

I’ve previously published a metformin review on LongeCity: 

http://www.longecity.org/forum/page/index.html/_/articles/metformin-a-life-extension-drug-r32   
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