• Log in with Facebook Log in with Twitter Log In with Google      Sign In    
  • Create Account
  LongeCity
              Advocacy & Research for Unlimited Lifespans

Photo
- - - - -

[FightAging] More New Faces at the SENS Research Foundation


  • Please log in to reply
No replies to this topic

#1 reason

  • Guardian Reason
  • 1,101 posts
  • 241
  • Location:US

Posted 02 July 2013 - 10:24 PM


There are a good many organizations that advocate for aging research and extended healthy lives. You can find some of them listed in the resources section here at Fight Aging! There is only one organization in the world, however, that (a) is presently meaningfully focused on creating the means of human rejuvenation, (b) has the support of a broad range of researchers and philanthropists, and © to which folk like you and I can donate, in the secure knowledge that even small donations will go towards directly speeding the development of specific, planned, plausible therapies to repair and reverse aging.

That organization is the SENS Research Foundation, which over the past few years has moved from strength to strength in expanding its budget and convincing more and more of the aging research community to become allies and supporters of ambitious goals in longevity science. At a $3 million yearly budget, the Foundation's reach is no longer a group that you can fit into a small photograph: there are small laboratories in a number of research establishments around the world, a bunch of folk in the Bay Area, and a broad network of advisors, just to start with.

You all recognize the SENS Research Foundation cofounder Aubrey de Grey, of course, but there are many more people working away on the foundations of rejuvenation biotechnology and they deserve their time in the spotlight. So the Foundation is running a series of profiles at the moment: funded researchers, interns, volunteers, advocates, conference speakers, advisors, and others - people who are working to ensure that you and I have a shot at living much longer healthy lives while evading the pain and suffering caused by untreated aging. I linked to some of these profiles a few weeks ago, and here are more in the same vein:

SENS6 Speaker Highlight: Dr. George Church

The SENS6 conference's keynote address will be delivered by Dr. George Church, a researcher widely considered a luminary in modern biotechnology with over 300 publications to date. Dr. Church may be best known for his key role in the Human Genome Project, which he helped initiate and drive. His genomic sequencing innovations have led him to be involved with most of the companies in that field, either as a co-founder, advisor, or provider of licensed technology.

At SENS6, Dr. Church's presentation will address his cutting-edge work on bringing CRISPR-associated systems, an adaptive immune defense of some single-celled organisms that uses short strands of RNA, to human cells. He will also discuss the latest sequencing technologies, and the need to supplement genomic information with environmental and trait data.

SENS6 Speaker Highlight: Dr. Felipe Sierra

Dr. Felipe Sierra stands out for his unifying vision and deep involvement in aging research. [He is] the head of the National Institute on Aging's Division of Aging Biology (DAB). The DAB studies the aging process itself; the remits of its various branches are genetics and cell biology, the effects of cellular and molecular changes on tissue function, and animal models of human aging. Instead of funding work about the mechanisms or progression of age-related diseases, the DAB supports work that elucidates why exactly it is that older adults suffer from these diseases while younger ones do not.

At SENS6, Dr. Sierra will give a presentation about [the Geroscience Interest Group] and the fundamental process that underlies the diseases of aging. He will be joined at the conference by many other top scientists, including Harvard's George Church, the Mayo Clinic's Jan van Deursen, Carnegie Mellon's Alan Russell, and MIT's Todd Rider.

Intern Sam Curran: IDing Senescent Cell Secretion Potentially Implicated In Age-Related Decline Of Immune System Function

Senescent cells [contribute to] pathologies associated with old age, such as tissue degeneration. Is there a way to target and treat the afflicted cells responsible [here]? This is the question being addressed [by] Sam Curran. In the summer of 2012 as part of the SENS Research Foundation Summer Internship Program, Sam joined Dr. Judith Campisi's laboratory at the Buck Institute for Research on Aging to work on a project dealing with the senescence phenotype of mesenchymal stem cells.

After the success of his summer project, Sam was invited by the Campisi lab to continue his research for a year of full-time funding by the SENS Research Foundation. Since his summer internship ended, Sam has made a number of novel discoveries. For instance, the senescence-associated secretory phenotype (SASP) of MSCs may be different than other cells due to their immunosuppressive secretions. Sam has already identified one senescence-associated immunosuppressive factor that may be implicated in two important biological phenomenon: the ability of senescent cells to evade immune-surveillance and age-related decline of immune system function. Sam hopes to identify additional immunosuppressive MSC SASP factors with yet another year of funded research in the Campisi lab before pursuing a Ph.D. in bioengineering in the fall of 2014.

Haroldo Silva: Lead OncoSENS Scientist Researches Telomere Lengthening and Cancer Pathways

I was a doctoral student at the University of California, Berkeley, in the department of Bioengineering. My dissertation laboratory at UC Berkeley is known for cutting-edge aging research and that was one of the reasons I joined that group in the first place. I also attended a seminar at Berkeley given by Aubrey de Grey which really opened my eyes about the real possibilities of a novel perspective on aging research transforming the world in our lifetime.

I am the lead scientist of the OncoSENS team at SRF. Our group seeks to uncover the genetic pathways and mechanisms that enable cancer cells to acquire unlimited cellular division. One of the major hurdles cancer cells need to overcome is how to keep the ends of their chromosomes (i.e., telomeres) from shortening with each cell division. A major pathway exploited by cancer cells to elongate their telomeres is upregulation of an enzyme called telomerase. However, about 10-15% of cancers do not have any detectable telomerase activity and thus operate via another pathway called Alternative Lengthening of Telomeres (ALT). The goal of our research team is to find out which specific genes are responsible for ALT activity in these cancers. Therefore, in theory, removal of both telomerase and ALT genes from the genome should eradicate cancer completely.

Connie Wang: Microglia, Aging and Alzheimer's

During her time at Caltech, Connie has engaged in a variety of research interests. She has conducted plant genetics research to determine whether a strain of Mimulus was a distinct subspecies and also helped design an optical coherence tomography (OCT) system for use in retinal surgery.

In 2012, she participated in the SENS Research Foundation Summer Internship Program. During her time at the SRF Research Center in Mountain View, California, she developed microglial cell assays that helped lay the groundwork for studying the relationship between microglia, aging, and Alzheimer's Disease. This summer, Connie is working with the Reichert lab at Duke University to develop an angiogenesis-promoting system for glucose sensors planted under the skin with the goal of making them a viable long-term solution for insulin-dependent diabetics. She will return to Caltech in the fall to begin her final year of study before applying to graduate school in 2014.


<br> <br>View the full article




0 user(s) are reading this topic

0 members, 0 guests, 0 anonymous users