• Log in with Facebook Log in with Twitter Log In with Google      Sign In    
  • Create Account
LongeCity .                       Advocacy & Research for Unlimited Lifespans


Adverts help to support the work of this non-profit organisation. To go ad-free join as a Member.


Photo
- - - - -

Carbon nanotubes between all our cells?

nanotubes

  • Please log in to reply
3 replies to this topic

#1 randomname

  • Registered User
  • 14 posts
  • 1
  • Location:Europe
  • NO

Posted 16 August 2013 - 05:18 PM


and in our brain?

Cell signals via membrane nanotubes

Most of the body’s cells communicate with each other by sending electrical signals through nano-thin membrane tubes. A sensational Norwegian research discovery may help to explain how cells cooperate to develop tissue in the embryo and how wounds heal.

For nearly ten years, researchers have known that cells can “grow” ultra-thin tubes named tunnelling nanotubes (TNTs) between one another. These nanotubes – the length of two to three cells and just 1/500th the thickness of a human hair – are connections that develop between nearly all cell types to form a communication channel different from any previously known mechanisms.
In 2010, Dr. Xiang Wang and Professor Hans-Hermann Gerdes – colleagues at the University of Bergen’s Department of Biomedicine – discovered that electrical signals were being passed through nanotubes from one cell to another at high speed (roughly 1-2 m/sec). Their research receives funding under the Research Council’s large-scale research programme Nanotechnology and New Materials (NANOMAT).

The breakthrough
In their key experiment, Dr Wang used fluorescent dye that changes in intensity as the electric potential of the cell membrane changes. When two cells connected by forming a nanotube, he poked into one of them with a microinjection needle to depolarise that cell’s membrane potential. This caused the fluorescent indicator on the cell membrane to light up like a firework, and it was soon followed by a similar light display in the cell on the other end of the nanotube.

The breakthrough discovery began with an experiment demonstrating intercellular transmission of electrical signals via nanotubes in 2007. The researchers then carried out similar trials with a number of other cell types, observing similar occurrences.

“We confirmed that this is a common phenomenon between cells,” explains Professor Gerdes. “Still, this characteristic is not in every cell type.”

The experiment was replicated a number of times to obtain statistically reliable data. The electrophysiology group at the University of Bergen took precise conductivity measurements of the cell systems to determine the strength of the electrical coupling. In autumn 2010 the results were published in Proceedings of the National Academy of Sciences (PNAS) and were highlighted as top news in Nature News
Here a cell has coupled with another cell by growing a long nanotube which enables it to exchange electrical signals. (Photo: UiB) Short lifespan

Intercellular nanotubes are far from permanent. Most of them last only a few minutes. This means the researchers cannot predict where and when the cells will form nanotube connections.

“It is truly painstaking work,” says Professor Gerdes. “You may sit there examining cells for hours through a microscope without seeing a single tube. If you are lucky, however, you catch sight of a nanotube being created and can film the event.”
To raise the likelihood of finding nanotubes, the researchers developed a micro-matrix consisting of thousands of points and bridges on a plate surface. Smaller than a postage stamp, the plate is covered by a nano-structured material to which the cells adhere. The researchers place one cell onto each point and hope that nanotubes will form along the bridges between the points. The camera is focused on these bridges.

Once the nanotubes have been established, the researchers manipulate the cells at specified times; meanwhile the microscope is programmed to photograph, say, 50 preselected points every five minutes. The team can thus obtain data about many nanotube connections in a short time.

How do cells do this?

Dr. Wang quickly discovered that the mere presence of a nanotube was not sufficient to transmit an electrical signal. There had to be another mechanism involved as well.

Many cells form tiny membrane pores with each other called gap junctions, which are made up of ring-shaped proteins. Back in the 1960s it was discovered that directly adjacent cells could exchange electrical impulses through these gap junctions. What Dr Wang found was that one end of the nanotube was always connected to cells by a gap junctions before it transmitted its electrical impulses.

He also found that in some coupled cells voltage-gated calcium channels were involved in the forwarding of the incoming signals. When the electrical signal being sent through the nanotube reaches the membrane of the receiving cell, the membrane surface is depolarised, opening the calcium channel and allowing calcium – a vital ion in cell signalling – to enter.
“In other words,” explains Professor Gerdes, “there are two components: a nanotube and a gap junction. The nanotube grows out from one cell and connects to the other cell through a gap junction. Only then can the two cells be coupled electrically.”

Controls embryonic cells?

Now the scientists are seeking answers as to why the cells send signals to each other in this way.

“It’s quite possible that the discovery of nanotubes will give us new insight into intercellular communication,” asserts Professor Gerdes. “The process could explain how cells are coordinated during embryo growth. In that phase cells travel long distances – yet they demonstrate a kind of collective behaviour, and move together like a flock of birds can.”

Nanotubes may also be a factor in explaining cell movement associated with wound healing, since cells move toward a wound in order to close it. We already know that electrical signals are somehow involved in this process; scientists can only speculate as to whether nanotubes are involved here as well, stresses Professor Gerdes.

Perhaps brain cells, too?

In terms of electronic signal processing, the human brain surpasses all other organs. If this same signalling mechanism proves to be present in human brain cells, it could add a new dimension to understanding how the brain functions. Communication channels involving synapses and dendrites that are already identified differ widely from nanotubes.

The Bergen-based neuroscientists see this research as an opportunity to formulate better explanations for phenomena related to consciousness and electrical connections in the brain. In the project “Cell-to-cell communication: Mechanism of tunnelling nanotube formation and function”, they are now studying precisely how nanotube mechanisms function in brain cells.

Professor Gerdes is currently conducting research at the European Molecular Biology Laboratory in Heidelberg. By studying the electrical connections in vivo he hopes to figure out how the mechanisms work in live subjects. The results could enhance understanding of diseases that occur when cell mechanisms fail to function properly.


Edited by randomname, 16 August 2013 - 05:19 PM.


#2 A941

  • Registered User
  • 1,005 posts
  • 40
  • Location:Austria

Posted 28 August 2013 - 02:18 AM

Fascinating!

#3 randomname

  • Topic Starter
  • Registered User
  • 14 posts
  • 1
  • Location:Europe
  • NO

Posted 28 August 2013 - 07:14 AM

Roger Penrose already speculated about water in and around the cytoskeleton microtubules.

"Quantum Water" Discovered in Carbon Nanotubes

A new quantum state of water found in carbon nanotubes at room temperature could have important implications for life

Posted Image
Many astrobiologists think that water is a key ingredient for life. And not just because life on Earth can’t manage without it.

Water has a weird set of properties that other chemicals simply do not share. One famous example is that water expands when it freezes, ensuring that ice floats rather than sinks. That’s important because if it didn’t, lakes and oceans would freeze from the bottom upwards, making it hard for complex life to survive and evolve.

These and other properties are the result of water molecules’ ability to form hydrogen bonds with each other and this gives these molecules some very special properties.
Today, George Reiter at the University of Houston and a few buddies put forward evidence that water is stranger than anybody thought. In fact, they go as far as to say that when confined on the nanometre scale, it forms into an entirely new type of quantum water.

The background to this is that the electrons in donor and acceptor molecules in hydrogen bonds are indistinguishable, meaning they can travel from one molecule to the next. When the molecules are confined in some way, they can spread some distance, when in a solid for example.

But water molecules can be confined in other ways too. And when that happens, the electronic structure of liquid water becomes a connected network.
That raises an important question: how does the behaviour of molecules in this electronic network differ from the behaviour of molecules in bulk water interacting in an ordinary way?

Reiter and co say they have measured the properties of confined in the tiny space inside carbon nanotubes at room temperature and found some important differences. They’ve done this by filling nanotubes with water and bombarding them with an intense beam of neutrons at the Rutherford Appleton Lab in the UK. The way the neutrons scatter reveals the momentum of the protons inside the nanotubes.

It turns out that the protons in this nano-confined water at room temperature behave in an entirely different way to those in bulk water. Protons are known to be sensitive to the electronic fields around them. So when these fields form into unusual electronic networks, it’s no surprise the protons behave differently.
“The departures of the momentum distribution of the protons from that of bulk water are so large, that we believe that the nano-confifined water can be properly described as being in a qualitatively different quantum ground state from that of bulk water,” they say.

They even suggest that there could be some kind of quantum coherence that spreads out through the electronic network. If that’s the case, it should be possible to measure how this decoheres in future experiments.

That’s a big deal. Reiter and co chose carbon nanotubes because they are an analogue of the conditions water faces when passing through living systems, through ion channels in cell membranes, for example. Biologists have long known that flow through these channels is orders of magnitude greater than conventional fluid dynamics predicts. Perhaps this new state of quantum water is the reason why.

Reiter and co also say that this quantum water can only exist when it is surrounded by neutral molecules such as the carbon in nanotubes and not in the presence of many commonly studied materials, such as proton exchange membranes like Nafion. This is made of molecules that conduct protons in an entirely different way and so prevents the formation of quantum water.

The implication, of course, is that the proton exchange membranes used in everything from chemical production to fuel cells could be dramatically improved by using a neutral carbon-based material.

In fact, this phenomenon may be a crucial factor in the very mechanism of life itself. Exciting stuff!
Ref: arxiv.org/abs/1101.4994: Evidence Of A New Quantum State Of Nano-Confifined Water



sponsored ad

  • Advert

#4 Turnbuckle

  • Registered User
  • 2,655 posts
  • 889
  • Location:USA
  • NO

Posted 28 August 2013 - 10:43 AM

I don't get the reference to carbon nanotubes in the title. The structures in cells are nanotubes, but they aren't carbon nanotubes. The body has no way of making that.

Edited by Turnbuckle, 28 August 2013 - 10:44 AM.






Also tagged with one or more of these keywords: nanotubes

0 user(s) are reading this topic

0 members, 0 guests, 0 anonymous users