Researchers here report that human neural progenitor cells derived from induced pluripotent stem cells (iPSCs) can induce some degree of recovery from stroke in mice. As expected for a cell therapy of this nature, functional recovery results from signaling provided by the transplanted cells that favorably alters the behavior of native cells. Inducing regeneration in the brain is important for more than just the damage of stroke, and so is an area of research worth keeping an eye on. In the case of stroke itself, however, more attention should be directed towards prevention: developing means of regressing atherosclerotic plaque to prevent rupture and blockage of vessels in the brain and otherwise reversing structural vascular aging to prevent breakage of vessels and consequent bleeding injury in the brain.
Stroke remains a leading cause of disability due to the brain's limited ability to regenerate damaged neural circuits. Here, we show that local transplantation of iPSC-derived neural progenitor cells (NPCs) improves brain repair and long-term functional recovery in stroke-injured mice. NPCs survive for over five weeks, differentiate primarily into mature neurons, and contribute to regeneration-associated tissue responses including angiogenesis, blood-brain barrier repair, reduced inflammation, and neurogenesis. NPC-treated mice show improved gait and fine-motor recovery, as quantified by deep learning-based analysis.
Single-nucleus RNA sequencing reveals that grafts predominantly adopt GABAergic and glutamatergic phenotypes, with GABAergic cells engaging in graft-host crosstalk via neurexin, neuregulin, neural cell adhesion molecule, and SLIT signaling pathways. Our findings provide mechanistic insight into how neural xenografts interact with host stroke tissue to drive structural and functional repair. These results support the therapeutic potential of NPC transplantation for promoting long-term recovery after stroke.
Link: https://doi.org/10.1038/s41467-025-63725-3
View the full article at FightAging