Structures of the endoplasmic reticulum are where the folding of newly synthesized proteins takes place in the cell. The endoplasmic reticulum is also involved in a range of other activities relevant to the manufacture of proteins and other molecules, such as quality control and recycling of misfolded proteins. Researchers here describe how the endoplasmic reticulum changes in structure with age, and link this to changes in the recycling of endoplasmic reticulum structures via autophagy. They suggest that these changes are compensatory, but become maladaptive in later life.
The morphological dynamics of the endoplasmic reticulum (ER) have received little attention in the context of ageing. Here we established tools in C. elegans for high-resolution live imaging of ER networks in ageing metazoans, which revealed profound shifts in ER network morphology that are driven by autophagy of ER components (ER-phagy). Across a variety of tissues, we consistently found a decrease in ER protein levels and cellular ER volume, and a structural shift from densely packed sheets to diffuse tubular networks. The ER content also declined in yeast and mammalian systems, and proteomic atlases of the ageing process in worms and mammals showed that age-onset collapse in ER proteostasis function is a broadly conserved aspect of the ageing process
We found that Atg8-dependent ER-phagy is the key mechanism driving turnover and remodelling of the ER network during ageing. A targeted screen for mediators in C. elegans revealed that the physiological triggers of ER-phagy in an ageing metazoan model are cell-type specific. Tissue-specific roles of ER-phagy receptors may help to explain why the ubiquitous macroautophagy machinery seems to be a universal requirement for longevity assurance in metazoan genetic studies, whereas the importance of selective ER-phagy mediators has been slower to emerge. Subsequently, we demonstrate that the two pathways capable of blocking age-associated ER-phagy, TMEM-131 and IRE-1-XBP-1, are required for mTOR-dependent lifespan extension in C. elegans.
Importantly, not all changes that occur during ageing reflect pathogenesis. The earliest remodelling events are likely to be adaptive responses to the cessation of developmental programmes and rising metabolic and cellular damage. We propose a model where age-dependent ER remodelling serves as an adaptive step in the ageing process associated with reprogramming of the proteostasis network. However, although data indicate that the net effect of ER-phagy on lifespan is positive, we speculate that early pronounced remodelling of ER structures is likely to trigger pleiotropic trade-offs later, especially in longer-lived cells and animals.
Link: https://doi.org/10.1038/s41556-025-01860-1
View the full article at FightAging














