• Log in with Facebook Log in with Twitter Log In with Google      Sign In    
  • Create Account
  LongeCity
              Advocacy & Research for Unlimited Lifespans


Adverts help to support the work of this non-profit organisation. To go ad-free join as a Member.


Photo
- - - - -

First System Of Human Nerve-cell Tissue Engineered


  • Please log in to reply
No replies to this topic

#1 Futurist1000

  • Guest
  • 438 posts
  • 1
  • Location:U.S.A.

Posted 07 March 2008 - 11:55 PM


ScienceDaily Nerve Cell Tissue Engineering

ScienceDaily (Feb. 27, 2008) — Researchers at the University of Pennsylvania School of Medicine have demonstrated that living human nerve cells can be engineered into a network that could one day be used for transplants to repair damaged to the nervous system.

"We have created a three-dimensional neural network, a mini nervous system in culture, which can be transplanted en masse," explains senior author Douglas H. Smith, MD, Professor, Department of Neurosurgery and Director of the Center for Brain Injury and Repair at Penn.

Although neuron transplantation to repair the nervous system has shown promise in animal models, there are few sources of viable neurons for use in the clinic and insufficient approaches to bridge extensive nerve damage in patients.

The Stretch Test In previous work, Smith's group showed that they could induce tracts of nerve fibers called axons to grow in response to mechanical tension. They placed neurons from rat dorsal root ganglia (clusters of nerves just outside the spinal cord) on nutrient-filled plastic plates.

Axons sprouted from the neurons on each plate and connected with neurons on the other plate. The plates were then slowly pulled apart over a series of days, aided by a precise computer-controlled motor system, creating long tracts of living axons.

These cultures were then embedded in a collagen matrix, rolled into a form resembling a jelly roll, and then implanted into a rat model of spinal cord injury. After the four-week study period, the researchers found that the geometry of the construct was maintained and that the neurons at both ends and all the axons spanning these neurons survived transplantation. More importantly, the axons at the ends of the construct adjacent to the host tissue extended through the collagen barrier to connect with the host tissue as a sort of nervous tissue bridge.


Edited by hrc579, 07 March 2008 - 11:56 PM.





1 user(s) are reading this topic

0 members, 1 guests, 0 anonymous users