• Log in with Facebook Log in with Twitter Log In with Google      Sign In    
  • Create Account
  LongeCity
              Advocacy & Research for Unlimited Lifespans

Photo
- - - - -

SirT1 Regulates Energy Metabolism


  • Please log in to reply
No replies to this topic

#1 Hedgehog

  • Guest
  • 462 posts
  • 1

Posted 13 March 2008 - 06:27 PM


Yet another new CR/SIRT1 paper. PLOS is really slow right now so it might take some time to download...




Gino Boily1, Erin L. Seifert2, Lisa Bevilacqua2, Xiao Hong He1, Guillaume Sabourin1, Carmen Estey2, Cynthia Moffat1, Sean Crawford1, Sarah Saliba1, Karen Jardine1, Jian Xuan2, Meredith Evans2, Mary-Ellen Harper2, Michael W. McBurney1,2*

1 Center for Cancer Therapeutics, Ottawa Health Research Institute, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada<a name="aff2" id="aff2">2 Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada



Abstract
The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction.



http://www.plosone.org/article/info%3Adoi%...al.pone.0001759



<h3 xpathlocation="/article[1]/body[1]/sec[3]/title[1]"></h3>

<h3 xpathlocation="/article[1]/body[1]/sec[3]/title[1]">Discussion</h3>Since its catalytic activity is dependent on NAD+, SirT1 deacetylase activity has been postulated to be controlled by the metabolic state of the cell [1], [2]. In fact, our observations suggest that SirT1 is an important regulator of metabolic activity because SirT1-null mice utilize ingested calories inefficiently and because SirT1-null mice do not adapt normally to CR or to fasting.

SirT1-null mice are smaller and lethargic compared to their normal littermates but, per gram of body weight, they consume more food and oxygen. Thus, the SirT1-null animal is metabolically inefficient compared to normal. Liver mitochondria appear to have a lower capacity to produce ATP because of lower state 3 respiration capacity and higher proton leak through the inner mitochondrial membrane. Perhaps to compensate for their reduced oxidative phosphorylation capacity, mitochondria from SirT1-null liver have increased capacity for TCA cycle and beta-oxidation. This compensation seems to be successful in maintaining the level of ATP but overnight fasting resulted in much higher levels of phospho-AMPK suggesting that ATP levels are not sustained in SirT1-null mice in the face of food deprivation.

SirT1 is known to modulate the activities of several regulators of metabolism but an examination of the characteristics of the SirT1-null mouse and the expectations based on published studies yields a number of unexpected contradictions. As a negative regulator of PPARγ, SirT1 decreases transcription of genes involved in fat storage [18] so the SirT1-null mice would be expected to have increased WAT depots; in fact WAT is reduced in these mice. SirT1 is a positive regulator of PGC1α [21], [28], so one might expect that tissues from SirT1-null mice would have fewer mitochondria. This does not seem to be the case as determined by measurements of the mitochondrial DNA copy number. Recent reports have indicated that SirT1 regulates insulin signaling either directly by deacetylation of IRS2 [29] or indirectly by derepressing PTP1B [30]. Both mechanisms would predict that SirT1-null mice should be insulin resistant. We found that the SirT1-null animals showed normal insulin-dependent glucose regulation. SirT1 is reported to be required for the switch from glucose to lipid oxidation [19] but SirT1-null mice had no difficulty in making this switch; in fact, these animals had a higher level of lipid oxidation under AL feeding conditions. Because SIRT1 is expressed in all tissues it is difficult to extrapolate information obtained from isolated cells and organs to accurately make predictions regarding the intact animal.

The means by which CR extends lifespan is not yet clear. In yeast and D. melanogaster, Sir2 has been shown to be required for CR to increase lifespan [6], [22]. Here we show that SirT1 is also required in mammals for some responses to CR. First, we confirmed that the CR-mediated increase in physical activity is not observed in SirT1-null mice [27]. Second, we show that, whereas normal mice maintain their metabolic rate when subject to CR, that of the mutant mice drops dramatically. Finally, SirT1 appears to be required for CR to increase lifespan. The beneficial effects of CR on lifespan of normal mice is typically observed after 20 months of age (e.g. [31]). Because our CR experiment was terminated before animals reached this age, we saw no difference in survival between our CR and AL groups of normal mice. However, we had already lost two-thirds of our SirT1-null mice by the end of this experiment and CR had no obvious beneficial effect on lifespan of these mice. In fact, CR seemed to augment the early demise of SirT1-null mice. We interpret our data to indicate that SirT1-null mice are not capable of adapting to CR conditions.

Lifespan is thought to be determined by the accumulation of cellular damage arising from ROS although recent evidence from C. elegans suggests that ROS might in fact be responsible for extending lifespan (Schulz et al., 2007). It is perhaps relevant that SirT1-null mice have liver mitochondria that produce less ROS than normal. In regards to mitochondrial uncoupling, this observation is consistent with increased proton leak in these mitochondria; however, the increased leak is not due to a derepression of ucp2, as one could infer from studies in pancreatic beta-cells [15]. Nevertheless, there are a number of other regulators of mitochondrial activity yet to be investigated [32], [33].

In conclusion, our study indicates that the absence of SIRT1 results in a metabolically inefficient animal that fails to adapt to CR conditions. Given that there are over 30 SirT1 substrates to date [10], it is remarkable that SirT1-null mice are viable and can sometimes reach 2 years of age. At this point, it is not yet clear which of the many SIRT1 substrates is/are responsible for the phenotype or which tissue(s) share the metabolic defect. A better understanding of the role of SirT1 in energy metabolism may help in designing strategies to provide the health benefits of CR without curtailing dietary energy intake.






1 user(s) are reading this topic

0 members, 1 guests, 0 anonymous users