• Log in with Facebook Log in with Twitter Log In with Google      Sign In    
  • Create Account
  LongeCity
              Advocacy & Research for Unlimited Lifespans


Adverts help to support the work of this non-profit organisation. To go ad-free join as a Member.


Photo
- - - - -

Their First Nanotechnology Textbook


  • Please log in to reply
No replies to this topic

#1 Cyto

  • Guest
  • 1,096 posts
  • 1

Posted 15 July 2004 - 06:53 PM


This new field of science, called nanotechnology, has unfolded so quickly that the recent university courses in nanotechnology have had to depend upon compendiums of journal articles as their textbooks or books geared to majors in a specific field.

Now, however, three scientists have pulled together some 60 active researchers across many disciplines to write a broad-based textbook specifically for students. Introduction to Nanoscale Science and Technology, has just been released by Kluwer Academic Publishers (www.wkap.nl/prod/b/1-4020-7720-3). The book was created by James R. Heflin Jr. of the Virginia Tech Department of Physics, Stephane Evoy of the University of Pennsylvania Department of Electrical and Systems Engineering, and Massimiliano Di Ventra of the University of California at San Diego Department of Physics.

The textbook consists of 23 chapters in seven sections, beginning with the fundamentals, how to make and characterize nanoscale materials and an overview of the new classes of materials. Nanotechnology was enabled by the microscopy technologies developed in the 1980s that provide atomic-scale resolution and, later, nanoscale modification of surfaces. The authors describe the top-down approach, or lithography, as "similar to the work of a sculptor carving a face from a block of marble." On the other hand, the bottom-up approach is the assembly of individual atoms and molecules to form complex systems.

The second section of the textbook looks at the new materials that have become the building blocks of nanotechnology – the hollow carbon molecules called fullerenes and nanotubes; nanocomposite materials designed to display the properties of their minute components; and collections of small numbers of atoms with altered electronic and optical properties, called quantum dots.

The remaining five sections describe applications. "A major goal of nanotechnology is to develop materials and devices that outperform existing technologies," the editors explain in the text's introduction. Thus there is a section on electronics. Nanotechnology means smaller and faster microelectronic devices, with individual molecules built as electronic components, and even single electron transistors.

"When I said, 'No way do I have the time to write a comprehensive textbook, they suggested I could form a team and invite contributors, so that's what I did," Heflin said. He invited Di Ventra, who was at Virginia Tech at the time, and Evoy to be co-editors.

"We did an outline of topics, then looked for people to write the various chapters," said Heflin. "The authors range from high-profile senior people to young, fast-rising scientists. Most of the contributors are faculty members at universities such as Virginia Tech, the University of Pennsylvania, Penn State, MIT, UCLA, the University of Washington, University of Virginia, and Johns Hopkins. There are also contributors from the national labs, such as Oak Ridge, and from industry, such as Hitachi."

"We wanted a broad-based, interdisciplinary book, like the field itself, and we wanted it to be accessible to students in chemistry, physics, biology, and any engineering discipline," Heflin said. "I think anyone with a science or engineering background could learn from this book. Stephane, Max, and I found we learned a great deal ourselves as we edited the submissions. We think the book will also be an excellent reference resource for academic, government, and industry researchers."


Link




0 user(s) are reading this topic

0 members, 0 guests, 0 anonymous users