PLoS One. 2014 Apr 9;9(4):e94215. doi: 10.1371/journal.pone.0094215. eCollection 2014.
Thompson JJ1, Blair MR1, Henrey AJ2.
Abstract
Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load.
From Discussion:
While our work does not directly assess the neurobiological bases of age-related decline, the isolation of these changes to the mid-twenties is potentially relevant to this literature. Consider, for example, changes in myelination integrity known to be related to finger tapping speed. These changes are thought to peak around 39 [26], far outside the confidence interval for the declines documented here, and so seem a poor candidate explanation. On the other hand, metabolic changes, such as in ratios of N-acetylaspartate (NAA) to choline (Cho) appear to begin in the early twenties or sooner [27], are thus, logically, more likely candidates.