• Log in with Facebook Log in with Twitter Log In with Google      Sign In    
  • Create Account
  LongeCity
              Advocacy & Research for Unlimited Lifespans

Photo

An Interview with Kelsey Moody of Ichor Therapeutics


  • Please log in to reply
No replies to this topic

#1 reason

  • Guardian Reason
  • 1,101 posts
  • 260
  • Location:US

Posted 15 March 2017 - 12:07 PM


The Life Extension Advocacy Foundation here interviews Kelsey Moody of Ichor Therapeutics, a company working on clinical translation of the SENS rejuvenation research approach to clearing one of the forms of persistent metabolic waste that causes aging and age-related disease. In this case, it is a type of waste product that is generated in the energetic cells of the retina; as it accumulates, it leads to macular degeneration and progressive blindness:

New medical technologies need bold researchers to make the leap from the laboratory table to hospitals and clinics where they can improve or even save lives. Kelsey Moody is one such researcher. Currently research into age-related diseases takes up huge amounts of funding, however very few of these approaches aim to treat the root causes - the processes of aging - and this is why they are not successful. Moody's focus in the past few years has been developing an effective treatment for age-related macular degeneration (AMD), a leading cause of vision loss among people over 50. The experimental treatment he's working on, called LYSOCLEAR, is currently being tested for validity at Ichor Therapeutics, a startup Moody founded in 2013. LYSOCLEAR is based on the LysoSENS approach advocated for by the SENS Research Foundation, where Moody worked as an academic coordinator first in 2008-2010 and as a research scientist in 2012.

How did you learn about the SENS approach?

I first came across SENS during an online review on regenerative medicine, and this initiated my interest in the study human aging. At the time, I had no formal training in science. However, Aubrey de Grey's approach made sense to me at face value, so I purchased his book, Ending Aging, to study it further. After completing the book, I felt I did not have sufficient knowledge to know whether or not his ideas were worthy of serious pursuit, but I was intrigued. I added a major in biochemistry, and reasoned to myself that I would commit to the study of aging until such a time as it was clear to me that such a pursuit was not feasible or a worthwhile use of my time and resources. Now a decade later, I have graduate level training in research, business, and medicine. While the conversation has become much more sophisticated, the original plan holds true. I have not reached a point where I believe SENS is unworthy of serious study. I have focused my company on translational research because I believe this is the area where we can have the greatest impact and where the largest deficits exist among the various longevity organizations, both nonprofit and commercial.

How easy (or difficult) would it be to adapt LYSOCLEAR to target different types of waste products in lysosomes of different tissues?

The idea of LYSOCLEAR is based on enzyme replacement therapy, which has already been used extensively in a clinical setting for the treatment of lysosomal storage diseases. In principle, the concept of "upgrading lysosomes" can be extended to numerous diseases of aging. The challenge is almost always in identifying ways to efficiently and specifically target the payload to its destination. This is somewhat easier when your target cells are well studied and express receptors known to facilitate efficient targeting, such as monocytes or (in our case) retinal pigmented epithelial cells. It is a harder technical problem for other tissue types. Broadly though, I am optimistic that this approach can be repurposed for other diseases, either by our team or others. Atherosclerosis immediately comes to mind, and SENS Research Foundation has funded research to identify enzymes capable of degrading plaque components, such as 7-ketocholesterol.

What are the main obstacles you have met at the early stage of your project?

The recurring challenge I see in the aging space is that the overwhelming majority of "anti-aging" researchers have little to no formal scientific training or wet lab experience, (and it shows), or are basic scientists. Virtually none have translational experience - that is, experience moving benchtop discoveries into a path towards commercialization. Conversely, the translational scientists I have interacted with over the years are almost transactional, and seem to be lacking the creativity and imagination of how new technologies could be applied to solve complex medical problems. So most of the people with ideas cannot execute, and most of the people who can execute lack vision. We try to address this issue as a company by having one foot firmly in the fringe, and the other firmly in the mainstream. For example, about half of our staff are futurists with a passion for anti-aging and SENS, but we balance that with experienced pharmaceutical professionals who keep us grounded and focused on actionable discoveries and a legitimate translational strategy. Likewise, all of our drug development programs include a far reaching "moonshot" opportunity, but also a highly conservative disease indication.

Link: http://www.leafscien...-to-the-clinic/


View the full article at FightAging




1 user(s) are reading this topic

0 members, 1 guests, 0 anonymous users